Lecture 8: Predicate Logic Proofs, English Proofs

MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

Last class: Inference Rules for Quantifiers

** by special, we mean that c is a name for a value where P(c) is true.We can't use anything else about that value, so c has to be a NEW name!.

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

1.	2 = 2 · 1	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Definition of Even: 2
4.	∃x Even(x)	Intro ∃: 3

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$ Prime(x) := "x > 1 and x≠a \cdot b for all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

A Prime Example

Domain of Discourse

Integers

Predicate Definitions Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$ Prime(x) := "x > 1 and x≠a \cdot b for all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1.	$2 = 2 \cdot 1$	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Def of Even: 3
4.	Prime(2)*	Property of integers
5.	Even(2) ^ Prime(2)	Intro ∧: 2, 4
6.	$\exists x (Even(x) \land Prime(x))$	Intro ∃: 5

* Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

3. $\forall x (Even(x) \rightarrow Even(x^2))$

?
Intro ∀: 1,2

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \forall : 1,2

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \forall : 1,2

These rules need some caveats...

There are extra conditions on using these rules:

Without those rules, it is possible to infer claims that are false

Without the rules, one could infer false claims...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \neq x)$ is True but $\exists y \forall x (y \neq x)$ is False

BAD "PROOF"1. $\forall x \exists y (y \neq x)$ Given2. Let a be an arbitrary integer3. $\exists y (y \neq a)$ Elim $\forall: 1$ 4. $b \neq a$ Elim $\exists: 3$ (b new constant)5. $\forall x (b \neq x)$ Intro $\forall: 2,4$ 6. $\exists y \forall x (y \neq x)$ Intro $\exists: 5$

With the extra conditions we can kill the bad proof...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \neq x)$ is True but $\exists y \forall x (y \neq x)$ is False

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics

 almost all math (and theory CS) done in Predicate Logic
- But they are tedious and impractical
 - e.g., applications of commutativity and associativity
 - Russell & Whitehead's formal proof that 1+1 = 2 appears after more than 100 pages of build up
 - we allowed ourselves to cite "Arithmetic", "Algebra", etc.
- Similar situation exists in programming...

Programming

Assembly Language

High-level Language

Programming vs Proofs

a := ADD(i, 1)
b := MOD(a, n)
c := ADD(arr, b)
d := LOAD(c)
e := ADD(arr, i)
STORE(e, d)

Given Given Elim ∧: 1 Double Negation: 4 Elim ∨: 3, 5 Modus Ponens: 2, 6

Assembly Language for Programs

Assembly Language for Proofs

Proofs

Given Given ∧ Elim: 1 Double Negation: 4 ∨ Elim: 3, 5 MP: 2, 6

what is the "Java" for proofs?

Assembly Language for Proofs

High-level Language for Proofs

Proofs

Given Given ∧ Elim: 1 Double Negation: 4 ∨ Elim: 3, 5 MP: 2, 6

Assembly Language for Proofs

High-level Language for Proofs

Proofs

Given Given ∧ Elim: 1 Double Negation: 4 ∨ Elim: 3, 5 MP: 2, 6

Assembly Language for Proofs

High-level Language for Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
 - as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - also easy to check with practice

(almost all actual math and theory CS is done this way)

 English proof is correct if the <u>reader</u> is convinced that they could translate it into a formal proof (the reader is the "compiler" for English proofs)

Even(x) $\equiv \exists y (x=2y)$ $Odd(x) \equiv \exists y (x=2y+1)$ **Domain: Integers**

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

- 2.1 Even(a)
- **2.3 a** = 2**b**
- **2.4** $a^2 = 4b^2 = 2(2b^2)$ Algebra
- **2.5** $\exists y (a^2 = 2y)$
- **2.** Even(a) \rightarrow Even(a²) Direct Proof
- **3.** $\forall x (Even(x) \rightarrow Even(x^2))$ Intro \forall

- Assumption
- **2.2** $\exists y (a = 2y)$ Definition of Even
 - Elim ∃: b depends on a
 - Intro 🗄
- **2.6** Even(a²) Definition of Even

English Proof: Even a	Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers					
Prove "The square of every even integer is even."						
Let a be an arbitrary integer. 1 . Let a be an arbitrary integer						
Suppose a is even.	2.1 Even(a)	Assumption				
Then, by definition, a = 2 b for some integer b .	2.2 ∃y (a = 2y) 2.3 a = 2b	Definition Elim∃: <mark>b</mark> depends on <mark>a</mark>				
Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$.	2.4 $a^2 = 4b^2 = 2$	2(2 <mark>b²)</mark> Algebra				
So a ² is, by definition, even.	2.5 ∃y (a ² = 2y 2.6 Even(a ²)) Intro∃ Definition				
Since a was arbitrary, we have shown that the square of every even number is even.	2. Even(a)→Eve 3. $\forall x$ (Even(x)→	n(a²) Direct Proof ►Even(x²)) Intro ∀				

Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary integer.

Suppose **a** is even. Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer **b**. Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary **even** integer.

Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer **b**. Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

 $\forall x (Even(x) \rightarrow Even(x^2))$

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Let x be an arbitrary integer
 Let y be an arbitrary integer

Since x and y were arbitrary, the sum of two odd integers is even.

- **3.** $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$
- **4.** $\forall y ((Odd(\mathbf{x}) \land Odd(y)) \rightarrow Even(\mathbf{x}+y))$ Intro \forall
- **5.** $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$ Intro \forall

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

- **1**. Let **x** be an arbitrary integer
- 2. Let y be an arbitrary integer
 - **3.1** $Odd(x) \land Odd(y)$ Assumption

so x+y is even.

Since x and y were arbitrary, the sum of two odd integers is even.

3.9 Even(x+y)

- **3.** $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ DPR
- **4.** $\forall y ((Odd(\mathbf{x}) \land Odd(y)) \rightarrow Even(\mathbf{x}+y))$ Intro \forall
- **5.** $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$ Intro \forall

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the sum of two odd integers is even.

- Let x be an arbitrary integer
 Let y be an arbitrary integer
 - **3.1** $Odd(\mathbf{x}) \land Odd(\mathbf{y})$ Assumption**3.2** $Odd(\mathbf{x})$ Elim \land : 3.1**3.3** $Odd(\mathbf{y})$ Elim \land : 3.1

3.9 Even(x+y)

- **3.** $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ DPR
- **4.** $\forall y ((Odd(\mathbf{x}) \land Odd(y)) \rightarrow Even(\mathbf{x}+y))$ Intro \forall
- **5.** $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$ Intro \forall

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.	 Let x be an arbitrary integer Let y be an arbitrary integer 	
Suppose that both are odd.	 3.1 Odd(x) ∧ Odd(y) 3.2 Odd(x) 3.3 Odd(y) 	Assumption Elim ∧: 3.1 Elim ∧: 3.1
Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b.	3.4 $\exists z (x = 2z+1)$ 3.5 $x = 2a+1$ 3.6 $\exists z (y = 2z+1)$ 3.7 $y = 2b+1$	Def of Odd: 3.2 Elim ∃: 3.4: a depend x Def of Odd: 3.3 Elim ∃: 3.6: b depend y
so x+y is, by definition, even.	3.9 ∃z (x + y = 2z) 3.10 Even(x + y)	Intro∃: ? Def of Even
Since x and y were arbitrary, the sum of two odd integers is even.	3. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Ev$ 4. $\forall y ((Odd(\mathbf{x}) \land Odd(y)) -$ 5. $\forall x \forall y ((Odd(x) \land Odd(y)) -$	en(x+y) DPR → Even(x+y)) Intro \forall → Even(x+y)) Intro \forall

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.	 Let x be an arbitrary integer Let y be an arbitrary integer 		
Suppose that both are odd.	 3.1 Odd(x) ∧ Odd(y) 3.2 Odd(x) 3.3 Odd(y) 	Assumption Elim ∧: 3.1 Elim ∧: 3.1	
Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b.	3.4 $\exists z (x = 2z+1)$ 3.5 $x = 2a+1$ 3.6 $\exists z (y = 2z+1)$ 3.7 $y = 2b+1$	Def of Odd: 3.2 Elim ∃: 3.4: a depend x Def of Odd: 3.3 Elim ∃: 3.6: b depend y	
Their sum is x+y = = 2(a+b+1)	3.8 x+y = 2(a + b + 1)	Algebra: 3.5, 3.7	
so x+y is, by definition, even.	3.9 ∃z (x + y = 2z) 3.10 Even(x + y)	Intro ∃: 3.8 Def of Even	
Since x and y were arbitrary, the sum of two odd integers is even.	3. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow E$ 4. $\forall y ((Odd(x) \land Odd(y))$	ven(x+y) DPR → Even(x+y)) Intro \forall	

5. $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$ Intro \forall

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary **odd** integers.

Then, x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even.

 $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$