CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs, English Proofs

Last class: Inference Rules for Quantifiers

A Not so Odd Example

Domain of Discourse
Predicate Definitions
$\operatorname{Even}(x):=\exists y(x=2 \cdot y)$
$\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1)$
Prove "There is an even number"
Formally: prove $\exists x$ Even (x)

* $4=2.2 \quad$ Algebra

3. \quad Fy $(4=2.4)$ Into $7: 2$
y Eum(y) Deft of Even:3
4. ix. Even (x) Into 7: 4

A Not so Odd Example

Domain of Discourse
Integers

Predicate Definitions
$\operatorname{Even}(x):=\exists y(x=2 \cdot y)$
$\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1)$

Prove "There is an even number"
Formally: prove $\exists x$ Even (x)
1.

Algebra
2. $\exists y(2=2 \cdot y) \quad$ Intro \exists : 1
3. Even(2)
4. $\exists x$ Even $(x) \quad$ Intro \exists : 3

A Prime Example

Domain of Discourse
Integers

$$
\begin{array}{|l|}
\hline \text { Predicate Definitions } \\
\hline \operatorname{Even}(x):=\exists y(x=2 \cdot y) \\
\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1) \\
\operatorname{Prime}(x):= \\
\\
\\
\\
\\
\text { all integers } a, b \text { with } 1<a<x \text { " }
\end{array}
$$

Prove "There is an even prime number" Formally: prove $\exists x(\operatorname{Eve}(x) \wedge \operatorname{Prime}(x))$

$$
\begin{aligned}
& \operatorname{Evcu}(2) 1 \operatorname{Srm}(2) \\
& J_{x}(\operatorname{Evan}(x) \wedge \text { Prime }(x)) \text { Into } Z:
\end{aligned}
$$

A Prime Example

Domain of Discourse
Integers

$$
\begin{array}{|l|}
\hline \text { Predicate Definitions } \\
\hline \operatorname{Even}(x):=\exists y(x=2 \cdot y) \\
\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1) \\
\operatorname{Prime}(x):= \\
\\
\\
\\
\\
\text { all integers } a, b \text { with } 1<a<x \text { " }
\end{array}
$$

Prove "There is an even prime number" Formally: prove $\exists x(E v e n(x) \wedge \operatorname{Prime}(x))$

1. $2=2 \cdot 1$
2. $\exists y(2=2 \cdot y)$
3. Even(2)
4. Prime(2)*
5. Even(2) \wedge Prime(2)
6. $\exists x(\operatorname{Even}(x) \wedge$ Prime $(x))$

Algebra Intro \exists : 1
Def of Even: 3
Property of integers
Intro ^: 2, 4
Intro \exists : 5

Inference Rules for Quantifiers: First look

${ }^{* *}$ c is a NEW name.

* in the domain of P

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
?. Let a be antatrany
2.1 Eve (a)

Ascuapth

$$
2.10 \operatorname{Even}\left(a^{2}\right)
$$

2. Even $(a) \rightarrow E$ iran $\left(a^{2}\right)$ Brut Dot
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
(?) Into $x=2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \text { Odd }(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

| Intro $\forall \frac{\text { "Let a be arbitrary*"...P(a) }}{}$ | Elim \exists $\exists \mathrm{xP}(\mathrm{x})$
 $\therefore \quad \forall \mathrm{P}(\mathrm{x})$ $\therefore \mathrm{P}(\mathrm{c})$ for some special** c |
| :---: | :---: | :---: |

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2. $\operatorname{Even}(\mathrm{a}) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y\left(x^{\prime}=2 y\right) \\
& \text { Odd }(x):=\exists y(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
2.2 Jy $(a=2 y)$ Defth of Ever
$2.5 \quad \exists y\left(a^{2}=2 y\right)$
2.6 Even(a^{2})

- $12 . \quad$ Even $(a) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$

3. $\forall x\left(E v e n(x) \rightarrow E v e n\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer

2.1 Even (\mathbf{a})	Assumption
C $2.2 \exists y(a=2 y)$	Definition of Even

2.6 Even $\left(\mathbf{a}^{2}\right)^{\text {• }} \quad$ Definition of Even
2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right) \quad$ Direct Proof
3. $\forall x\left(E v e n(x) \rightarrow E v e n\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

| Intro \forall "Let a be arbitrary*"...P(a) | Elim $\exists$$\quad \exists \mathrm{xP}(\mathrm{x})$ |
| :---: | :---: | :---: |
| $\therefore \quad \forall \mathrm{PP}(\mathrm{x})$ | $\therefore \mathrm{P}(\mathrm{c})$ for some special** c |

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(\mathbf{a}=2 \mathrm{y})$
Assumption
Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. $\operatorname{Even}(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Intro \exists : ?
Definition of Even
Direct proof
Intro $\forall: 1,2$

Need $a^{2}=2 c$ for some c

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \text { Odd }(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.3 a=2 b$
Elim \exists : b
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. $\operatorname{Even}(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \text { Odd }(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall "Let a be arbitrary*"...P(a)	Elim 3	$\exists x P(x)$
$\therefore \quad \forall \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{c})$ for some special** ${ }^{\text {c }}$	

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y)$
$2.3 a=2 b$
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right) \quad$ Algebra
Definition of Even
$2.5 \exists y\left(\mathbf{a}^{2}=2 \mathrm{y}\right)$ Intro \exists

Used $\mathrm{a}^{2}=2 c$ for $\mathrm{c}=2 \mathrm{~b}^{2}$
2.6 Even(\mathbf{a}^{2})
2. Even $(\mathbf{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right)$
3. $\forall \mathrm{x}\left(\operatorname{Even}(\mathrm{x}) \rightarrow \operatorname{Even}\left(\mathrm{x}^{2}\right)\right)$

Definition of Even
Direct Proof
Intro $\forall: 1,2$

These rules need some caveats...

There are extra conditions on using these rules:

Without those rules, it is possible to infer claims that are false

Without the rules, one could infer false claims...

There are extra conditions on using these rules:
$\frac{\text { Intro } \forall \text { "Let a be arbitrary*"...P(a) }}{\therefore \quad \forall x P(x)}$

* in the domain of P

$\operatorname{Elim} \exists$	$\exists x P(x)$
$\therefore P(c)$ for some special**	

${ }^{* *} \mathrm{c}$ has to be a NEW name.

Over integer domain: $\forall x \exists y(y \neq x)$ is True but $\exists y \forall x(y \neq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \neq x) \quad$ Given
2. Let a de an arbitrary integer
3. $\exists y(y \neq a) \quad$ Elim $\forall: 1$
4. $\mathrm{b} \neq \mathrm{a} \quad$ Elim $\exists: 3$ (b new constant)
5. $\forall x(b \neq x) \quad$ Intro $\forall: 2,4$
6. $\exists y \forall x(y \neq x) \quad$ Intro $\exists: 5$

With the extra conditions we can kill the bad proof...

There are extra conditions on using these rules:

$$
\therefore \mathrm{P}(\mathrm{c}) \text { for some special** } \mathrm{c}
$$

```
** c is a NEW name.
List all dependencies for c.
```

Over integer domain: $\forall x \exists y(y \neq x)$ is True but $\exists y \forall x(y \neq x)$ is False BAD "PROOF" KILLED

1. $\forall x \exists y(y \neq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists y(y \neq a) \quad \operatorname{Elim} \forall: 1$
4. $\quad \mathrm{b} \neq \mathrm{a} \quad$ Elim \exists : 3 (b depends on a)

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

Formal Proofs

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
- almost all math (and theory CS) done in Predicate Logic
- But they are tedious and impractical
- e.g., applications of commutativity and associativity
- Russell \& Whitehead's formal proof that 1+1 = 2 appears after more than 100 pages of build up
- we allowed ourselves to cite "Arithmetic", "Algebra", etc.
- Similar situation exists in programming...

Programming

$$
\begin{aligned}
& \mathrm{a}:=\operatorname{ADD}(\mathrm{i}, 1) \\
& \mathrm{b}:=\operatorname{MOD}(\mathrm{a}, \mathrm{n}) \\
& \mathrm{c}:=\operatorname{ADD}(\mathrm{arr}, \mathrm{~b}) \\
& \mathrm{d}:=\operatorname{LOAD}(\mathrm{c}) \\
& \mathrm{e}:=\operatorname{ADD}(\operatorname{arr}, \mathrm{i}) \\
& \operatorname{STORE}(\mathrm{e}, \mathrm{~d})
\end{aligned}
$$

Assembly Language

$$
\operatorname{arr}[\mathrm{i}]=\operatorname{arr}[(\mathrm{i}+1) \% \mathrm{n}] ;
$$

High-level Language

Programming vs Proofs

$$
\begin{aligned}
& \mathrm{a}:=\operatorname{ADD}(\mathrm{i}, 1) \\
& \mathrm{b}:=\operatorname{MOD}(\mathrm{a}, \mathrm{n}) \\
& \mathrm{c}:=\operatorname{ADD}(\mathrm{arr}, \mathrm{~b}) \\
& \mathrm{d}:=\operatorname{LOAD}(\mathrm{c}) \\
& \mathrm{e}:=\operatorname{ADD}(\mathrm{arr}, \mathrm{i}) \\
& \operatorname{STORE}(\mathrm{e}, \mathrm{~d})
\end{aligned}
$$

Assembly Language
for Programs

Given
Given
Elim \wedge : 1
Double Negation: 4
Elim V: 3, 5
Modus Ponens: 2, 6

Assembly Language for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs
what is the "Java" for proofs?

High-level Language for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

English?

High-level Language
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

Math English

High-level Language
for Proofs

Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
- as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- also easy to check with practice
(almost all actual math and theory CS is done this way)
- English proof is correct if the reader is convinced that they could translate it into a formal proof
(the reader is the "compiler" for English proofs)

Formal Proof: Even and Odd

Prove: "The square of every even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
$2.3 \mathrm{a}=2 \mathrm{~b}$
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right) \quad$ Algebra
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. $\operatorname{Even}(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad$ Intro \forall

English Proof: Even and Odd

$\operatorname{Even}(x) \equiv \exists y \quad(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)$ Domain: Integers

Prove "The square of every even integer is even."

Let a be an arbitrary integer.
Suppose a is even.
Then, by definition, $a=2 b$ for some integer b.

Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$.

So a^{2} is, by definition, even.

Since a was arbitrary, we have shown that the square of every even number is even.

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y)$
2.3 a $=2 \mathrm{~b}$ Elim \exists
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$ Algebra

$$
\begin{array}{ll}
2.5 \exists y\left(a^{2}=2 y\right) & \text { Intro } \exists \\
2.6 \text { Even }\left(a^{2}\right) & \text { Definition }
\end{array}
$$

2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right) \quad$ Direct Proof
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad$ Intro \forall

English Proof: Even and Odd

Even $(x) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)$ Domain: Integers

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary integer.
Suppose a is even. Then, by definition, $a=2 b$ for some integer b. Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$. So a^{2} is, by definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even.

English Proof: Even and Odd

$\operatorname{Even}(x) \equiv \exists y \quad(x=2 y)$ $\operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1)$ Domain: Integers

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary even integer.
Then, by definition, $a=2 b$ for some integer b. Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$. So a^{2} is, by definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even.

$$
\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)
$$

Even and Odd

Predicate Definitions
Even $(\mathrm{x}) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

$$
\left.\forall x \forall y(\mid o d d(x) \wedge \operatorname{Odd}(y)) \rightarrow E_{\text {rena }}(x+y)\right)
$$

Even and Odd

Predicate Definitions
Even $(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.

Since x and y were arbitrary, the sum of any odd integers is even. two

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.10 Even (xnty)
3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y})$
4. $\forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y})) \quad$ Intro \forall
5. $\forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow$ Even $(\mathbf{x}+\mathbf{y}))$ Intro \forall

\section*{Even and Odd | Predicate Definitions |
| :--- |
| $\operatorname{Oven}(x) \equiv \exists y(x=2 y)$ |}

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.
so $x+y$ is even.
Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall y((O d d(x) \wedge \operatorname{Odd}(y)) \rightarrow$ Even $(x+y)) \quad$ Intro \forall
5. $\forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow$ Even $(x+y))$ Intro \forall

Even and Odd

Predicate Definitions
Even $(\mathrm{x}) \equiv \exists y(x=2 y)$ $\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.
so $x+y$ is even.
Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1	Odd(\mathbf{x}) ^ Odd(\mathbf{y})	Assumption
	$\operatorname{Odd}(\mathbf{x})$	Elim \wedge : 2.1
3.3	Odd(y)	Elim \wedge : 2.1
3.4. Jz $(x=2=71)$ Det" ould 3.5 $x=2-a+1$ Elun 7: a deprut		
3.9	Even($\mathbf{x}+\mathrm{y}$)	

3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(x+y)) \quad$ Intro \forall
5. $\forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathrm{x}+\mathrm{y}))$ Intro \forall

English Proof: Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.
Then, we have $x=2 a+1$ for some integer a and $y=2 b+1$ for some integer b.
so $x+y$ is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1	$\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
3.2	$\operatorname{Odd}(\mathbf{x})$	Elim \wedge : 2.1
3.3	$\operatorname{Odd}(\mathbf{y})$	Elim ^: 2.1
3.4	$\exists \mathrm{z}(\mathrm{x}=2 \mathrm{z}+1)$	Def of Odd: 2.2
3.5	$x=2 a+1$	Elim $3: 2.4$ a
3.6	$\exists z(y=2 z+1)$	Def of Odd: 2.3
3.7	$y=2 b+1$	Elim $3: 2.5$

$3.9 \mathrm{\exists z}(\mathrm{x}+\mathrm{y}=2 \mathrm{z})$
3.10 Even($\mathbf{x + y}$)

Intro ヨ: 2.4
Def of Even
3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y})) \quad$ Intro \forall
5. $\forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow$ Even $(\mathbf{x}+\mathbf{y}))$ Intro \forall

English Proof: Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.
Then, we have $\mathrm{x}=2 \mathrm{a}+1$ for some integer a and $y=2 b+1$ for some integer b.

Their sum is $x+y=\ldots=2(a+b+1)$
so $x+y$ is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

$3.1 \operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
3.2 Odd(x)	Elim \wedge : 2.1
3.3 $\operatorname{Odd}(\mathbf{y})$	Elim \wedge : 2.1
$3.4 \exists z(x=2 z+1)$	Def of Odd: 2.2
$3.5 \mathrm{x}=2 \mathrm{a}+1$	Elim \ddagger : 2.4
$3.6 \mathrm{gz}(\mathrm{y}=2 \mathrm{z}+1)$	Def of Odd: 2.3
$3.7 \mathrm{y}=2 \mathrm{~b}+1$	Elim $9: 2.5$
$3.8 \mathrm{x}+\mathrm{y}=2(\mathrm{a}+\mathrm{b}+1)$	Algebra
$3.9 \mathrm{gz}(\mathrm{x}+\mathrm{y}=2 \mathrm{z})$	Intro Э: 2.4
3.10 Even($x+y$)	Def of Even

3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y})) \quad$ Intro \forall
5. $\forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}))$ Intro \forall

Even and Odd

Predicate Definitions
Even $(\mathrm{x}) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary integers.
Suppose that both are odd. Then, we have $\mathrm{x}=2 \mathrm{a}+1$ for some integer a and $y=2 b+1$ for some integer b. Their sum is $x+y=(2 a+1)+(2 b+1)=2 a+2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even.

Even and Odd

Predicate Definitions
Even $(\mathrm{x}) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(\mathrm{x}) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary odd integers.
Then, $x=2 a+1$ for some integer a and $y=2 b+1$ for some integer b. Their sum is $x+y=(2 a+1)+(2 b+1)=2 a+2 b+2=$ $2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even.

```
\forallx \forally ((Odd(x) ^ Odd(y)) }->\mathrm{ Even(x+y))
```

