CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs, English Proofs

THE AXIONM OF CHOICE ALLOWS
You To SELECT ONE ELEMENT

FROM EACH SET Wlﬁ COLLECTION

AND HAVE IT” EXECUTED RS
AN EXAMPLE T0 THE OTHERS.
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Last class: Inference Rules for Quantifiers

Intro 3

m — Vx P(x)

Ix P(x) ~ P(a) for any a

Elim 3 dx P(X) Intro V
= P(c) for some special** c

** by special, we mean thatcis a
name for a value where P(c) is true.
We can’t use anything else about that
value, so c has to be a NEW namel.




A Not so Odd Example

Domain of Discourse

Integers

Prove “There is an even number”

| Predicate Definitions

Even(x) :=dy (x = 2-y)

Odd(x) :=3y (x = 2-y +1)

Formally: prove dx Even(x)
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A Not so Odd Example

Domain of Discourse| |Predicate Definitions
Integers J |Even(x) := 3y (x = 2-y)
Odd(x) :=dy (x=2'y +1)

Prove “There is an even number”
Formally: prove dx Even(x)

1. 2=2-1 Algebra

2. dy(2=2y) Introd:1

3. Even(2) Definition of Even: 2
4, dx Even(x) Intro d: 3



A Prime Example

Domain of Discourse| [Predicate Definitions
Integers

Even(x) :=3dy (x =2-y)

Odd(x) :=3dy (x=2-y + 1)

Prime(x) := “x > 1 and x#a-b for

\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Evei(x) A Prime(x))
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A Prime Example

Domain of Discourse| [Predicate Definitions

Integers

Even(x) :=3dy (x =2-y)

Odd(x) :=3dy (x=2-y + 1)
Prime(x) := “x > 1 and x#a-b for
\_ all integers a, b with 1<a<x” /

Prove “There is an even prime number”
Formally: prove dx (Even(x) A Prime(x))

o0k wbpE

2=21

dy (2=2-y)

Even(2)

Prime(2)*

Even(2) A Prime(2)

dx (Even(x) A Prime(x))

Algebra

Intro 3: 1

Def of Even: 3
Property of integers
Intro A: 2, 4

Intro 4: 5

* Later we will further break down “Prime” using quantifiers to prove statements like this



Inference Rules for Quantifiers: First look

P(c) for some c . Vx P(x)
Intro 3 Elim V
ax P(X) P(a) (for any a)
Elim 3 Ax P(x) | Let a be arbitrary*”...P(a)
= P(c) for some special** c Vx P(x)

*in the domain of P

** cisa NEW name.




Even(x) := 3y (x=2y)
Even and Odd Odd(x) :=3y (x=2y+1)

Domain: Integers

[ Intro V .“Let)a b%rbitrm*”m Elim ax P(X) ]

“ Y (ﬂ/ N - P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))
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Even(x) := dy (x=2y)

Even and Odd Odd(x) :=3y (x=2y+1)
Domain: Integers
——-'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2. Even(a)—Even(a?) @
3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even and Odd

Even(x) := Jy (x=2y)
Odd(x) :=3y (x=2y+1)
Domain: Integers

..P(a)

| Let a be arbitrary*”
Vx P(x)

Elim 3 dx P(x) J

=~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer
2.1 Even(a)

2% Qb’ (afly} Dl of B

Assumption

2< Y (o}—,‘)j\ bo Iz

2.6 Even(a

?)

—\ 2. Even(a)—Even(a?)
3. Vx (Even(x)—Even(x?)) Intro V: 1,2
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Direct proof



Even(x) := 3y (x=2y)
Even and Odd Odd(x) :=3y (x=2y+1)

_ Domain: Integers

— e~

[ ‘Let a be arbitrary*”...P(a) /ﬂ x P(x)

Intro V .
Vx P(x) q . P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
£ 2.2‘3 Elya(a ;ylf)) Dce{initiogony\{en C\a s al
2. - S\ (W~ L \
Q‘l‘; &v): 2 (?-E’ >¢=
2.5 Iy (a?=2y) =
2.6 Even(a?) ~ Definition of Even
2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even and Odd

Even(x) := dy (x=2y)
Odd(x) :=3y (x=2y+1)

Domain: Integers

[

[

—— | Let a be arbitrary*”...P(a) | [Elim 3

Vx P(x)

dx P(x) J

=~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a)
2.2 dy(a=2y)

2.5 3Jy (a?=2y)
2.6 Even(a?)

2. Even(a)—Even(a?)

3. Vx (Even(x)—Even(x?))

Assumption
Definition of Even

Need a2 = 2c
Intro d: @ —

o for some ¢
Definition of Even

Direct proof
Intro V: 1,2



Even(x) := dy (x=2y)

= =2y+
Even and Odd Odd(x) :=3y (x=2y+1)
Domain: Integers
—— Let a be arbitrary*”...P(a) i N
Vx P(x) o W

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition of Even
2.3 a=2b Eim3:b e
2.5 3Jy (a?=2y) Intro 3: @ :ﬁiﬂ:::ezczc
2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



Even(x) := 3y (x=2y)

Even and Odd Odd(x) :=3y (x=2y+1)
Domain: Integers
——-'Let a be arbitrary*”...P(a) | [Elim 3 dx P(x)
Vx P(x) =~ P(c) for some special** c

Prove: “The square of any even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption
2.2 dy(a=2y) Definition o;\Exﬂen RE-R
2.3 a=2b Elim3d: be “2 14— b
2.4 a’=4b?=2(2b?) Algebra A = Z"*f,_.-_
2.5 Ty (aZ=2y) Intro 3 Used a? = 22 for c=2b?
2.6 Even(a?) Definition of Even

2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro V: 1,2



These rules need some caveats...

There are extra conditions on using these rules:

oy | Let a be arbitrary*”. Elim 3 3x P(x)

0 Vx P(x = P(c) for some special** c

** cisa NEW name.
List all dependencies for c.

1

*in the domain of P. No other
name in P depends on a

Without those rules, it is possible to infer claims that are false




Without the rules, one could infer false claims...

There are extra conditions on using these rules:

oy _Let a be arbitrary*”...P(a)  [Elim3 Ix P(x)
Vx P(x) = P(c) for some special** c
*in the domain of P ** ¢ has to be a NEW name.

Over integer domain: Vx dy (y # x) is True but dyVx (y # x) is False

BAD “PROOF”

1. Vxdy(y #x) Given

2. [LCetabeamarbitrary integer

3. dy(y+#a) Elim V: 1

4, b+#a Elim 3: 3 (b new constant)
5. Vx (b #x) Intro V: 2,4

6. dyVx(y #x) Introd:5



With the extra conditions we can kill the bad proof...

There are extra conditions on using these rules:
o L Let a be arbitrary*”...P(a)  [Elim3 dx P(x)

Vx P(x = P(c) for some special** c

*in the domain of P. No other
name in P depends on a

** cisa NEW name.
List all dependencies for c.

Over integer domain: Vx dy (y # x) is True but dyVx (y # x) is False
[] [ ——
BAD “PROOF” KILLED

1. Vxdy(y #x) Given

2. Let a be an arbitrary integer

3. dy(y+#a) Elim V: 1

4, b+#a Elim 3: 3 (b depends on a)

5. Wihr———imtro V" 2,4
ﬁ 6. dyVx(y #x) Introd:5

Can’t get rid of a since another name in the same line, b, depends on it!



Inference Rules for Quantifiers: Full version

P(c) for some c . Vx P(x)
Intro J Elim V
ax P(X) P(a) (for any a)
Elim 3 Ax P(x) | Let a be arbitrary*”...P(a)
= P(c) for some special** c Vx P(x)
** cisa NEW name. *in the domain of P. No other

List all dependencies for c. name in P depends on a.




Formal Proofs

* |n principle, formal proofs are the standard for
what it means to be “proven” in mathematics

— almost all math (and theory CS) done in Predicate Logic

* But they are tedious and impractical
— e.g., applications of commutativity and associativity

— Russell & Whitehead’s formal proof that 1+1 =2
appears after more than 100 pages of build up
— we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

* Similar situation exists in programming...



Programming

a:=ADD(1,1)

b:=MOD(a, n)

c :=ADD(arr,b)

d :=LOAD(c)

e :=ADD(arr, 1)

STORE (e, d) arr[1] = arr[(1+1) % n];

Assembly Language High-level Language



Programming vs Proofs

a:=ADD(1, 1)
b:=MOD(a, n)
c :=ADD(arr,b)
d :=LOAD(c)

e :=ADD(arr, 1)
STORE (e, d)

Assembly Language
for Programs

Given

Given

ElimA: 1

Double Negation: 4
Elimv: 3,5

Modus Ponens: 2, 6

Assembly Language
for Proofs



Proofs

Given

Given

A Elim: 1 what is the “Java”
Double Negation: 4 for proofs?

V Elim: 3,5

MP: 2, 6

Assembly Language High-level Language
for Proofs for Proofs



Proofs

Given

Given

A Elim: 1

Double Negation: 4
V Elim: 3, 5

MP: 2, 6

English?

Assembly Language High-level Language
for Proofs for Proofs



Proofs

Given

Given

A Elim: 1

Double Negation: 4
V Elim: 3, 5

MP: 2, 6

Math English

Assembly Language High-level Language
for Proofs for Proofs



Proofs

 Formal proofs follow simple well-defined rules and
should be easy for a machine to check
— as assembly language is easy for a machine to execute

* English proofs correspond to those rules but are
designhed to be easier for humans to read

— also easy to check with practice
(almost all actual math and theory CS is done this way)

— English proof is correct if the reader is convinced that
they could translate it into a formal proof
(the reader is the “compiler” for English proofs)




Even(x) =3dy (x=2y)
Formal Proof: Even and Odd Odd(x) =3y (x=2y+1)

Domain: Integers

Prove: “The square of every even number is even.”
Formal proof of: Vx (Even(x) — Even(x?))

1. Let a be an arbitrary integer

2.1 Even(a) Assumption

2.2 3dy(a=2y) Definition of Even

2.3 a=2b Elim 3

2.4 a’=4b’=2(2b?) Algebra

2.5 3y (a?=2y) Intro 3

2.6 Even(a?) Definition of Even
2. Even(a)—Even(a?) Direct Proof

3. Vx (Even(x)—Even(x?)) Intro ¥V



English Proof: Even and Odd

Even(x) =3y (x=2y)
Odd(x) =3y (x=2y+1)
Domain: Integers

Prove “The square of every even integer is even.”

A€t a be an arbitrary integer.

—

Suppose a is even.

Then, by definition, a = 2b for
some integer b.

Squaring both sides, we get
a%=4b?% = 2(2b?).

So a?is, by definition, even.

Since a was arbitrary, we have
shown that the square of every
even number is even.

2. Even(a)—Even(a?)
3. Vx (Even(x)—Even(x?))

1. Let a be an arbitrary integer

#tabean amiTaly Weest

2.1 Even(a) Assumption

2.2 dy(a=2y) Definitie
23 a=2b @

2.4 a%=4b?=2(2b?) Algebra

2.5 3Ty (a?=2y) Intro 3
2.6 Even(a?) Definition

Direct Proof
Intro V



Even(x) =3y (x=2y)
English Proof: Even and Odd 0dd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

—

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, a = 2b for some
integer b. Squaring both sides, we get a?= 4b? = 2(2b?).
So a?is, by definition, is even.

Since a was arbitrary, we have shown that the square of
every even number is even. B



Even(x) =3y (x=2y)
English Proof: Even and Odd 0dd(x) =3y (x=2y+1)

Domain: Integers

Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary even integer.

\—/

Then, by definition, a = 2b for some integer b. Squaring
both sides, we get a?=4b? = 2(2b?%). So a?is, by
definition, is even.

Since a was arbitrary, we have shown that the square of
every even number is even. B

Vx (Even(x) — Even(x?))



Predicate Definitions

Domain of Discourse

Even and Odd  [Even(x) =3y (x = 2y)

Odd(X) = Hy (x — Zy + 1) IntEgerS

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))

o x Yy (fo Jd(x] A4 Oty = Ernlrey )



Predicate Definitions

Even(x) =3y (x = 2y)

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))

Let x and y be arbitrary integers. 1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

EA

2((0 E"“"&T\N )
| | 3. (0dd(x) A Odd(y)) — Even(x+y)
Since x and y were arbitrary, the 4. Yy ((Odd(x) A Odd(y)) —> Even(x+y)) Intro ¥V

sum of any o%ﬂ integers is even. S. VxVYy ((Odd(x) A Odd(y)) — Even(x+y)) Intro V



Predicate Definitions

Even and Odd < [Een=3y G=2)>
Odd(xJ=dy (x =2y + 1)

Domain of Discourse
Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))

Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer
2. Lety be an arbitrary integer
Suppose that both are odd. 3.1 Odd(x) A Odd(y) ~ Assumption
2, Odd W Ehn A %)
72 Or\y) v A: 300
SO X+y IS even. 3.9 Even(x+y) Vel o‘ SO
_———
Since x and y were arbitrary, the 3. (Odd(x) A Odd(y)) — Even(x+y)  DPR

4. Vy ((0dd(x) A Odd(y)) — Even(x+y)) IntroV

sum of any odd integers is even.
5. VxVy ((0dd(x) A Odd(y)) — Even(x+y)) Intro V



Predicate Definitions - -
Domain of Discourse

Even(x)=3y (x = 2y)
Even and Odd 0dd(x) = 3y (x = 2y + 1) | Integers

Prove “The sum of two odd numbers is even.”
Formally, prove Vx Vy ((Odd(x) A Odd(y))—Even(x+y))

1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

Suppose that both are odd. 3.1 0dd(x) A Odd(y) Assumption
3.2 0Odd(x) Elim A: 2.1

3.3 0Odd(y) Elim A: 2.1
5. T2 (D) (ki 4 odd
%5 ¥=lead| € oa W

SO X+Y is even. 3.9 Even(x+y)

Since x and y were arbitrary, the 3. (Odd(x) A Odd(y)) — Even{x+y) ~ DPR
’ 4. Vy((0dd(x) A Odd(y)) = Even(x+y))  Intro ¥/

sum of any odd integers is even. 5. xVy ((0dd(x) A Odd(y)) — Even(x+y)) Intro ¥/

Let x and y be arbitrary integers.



Even(x) =3y (x=2y)
English Proof: Even and Odd 0dd(x) =3y (x=2y+1)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers. 1. Letxbe an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

Suppose that both are odd. 3.2 Odd(x) Elim A: 2.1
3.3 0Odd(y) Elim A: 2.1
Then, we have x = 2a+1 for 3.4 3z (x=2z+1) Def of Odd: 2.2
some integer a and y = 2b+1 for 3.5 x=2atl Elim 3: 2.4 & ok ~
some integer b. 3.6 3z (y=2z+1) Def of Odd: 2.3
3.7 y=2b+l Elim3:25 |
: el 3.9 3z (x+y=2z2) Intro 3: 2.4
so x+y is, by definition, even. 3.10 Even(x+y) Def of Even
Since x and y were arbitrary, the = 3. (0dd(x) A Odd(y)) — Even(x+y) DPR

sum of any odd integers is even. 4 VY ((Odd(x) A Odd(y)) — Even(x+y))  Intro ¥
5. VxVy ((0dd(x) A Odd(y)) — Even(x+y)) Intro ¥V



English Proof: Even and Odd 0dd(x) =3y (x=2y+1)

Even(x) =3y (x=2y)

Domain: Integers

Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for
some integer a and y = 2b+1 for
some integer b.

Their sum is x+y = ... = 2(a+b+1)

so x+y is, by definition, even.

Since x and y were arbitrary, the
sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Lety be an arbitrary integer

3.1 0Odd(x) A Odd(y) Assumption

3.2 0dd(x) Elim A: 2.1
3.3 0Odd(y) Elim A: 2.1
3.4 3z (x=2z+1) Def of Odd: 2.2
3.5 x=2a+l Elim3:2.4 — 7’
3.6 3Jz(y=2z+1) Def of Odd: 2.3
3.8 x+y=2(a+b+1) Algebra
3.9 3z (x+y=2z2) Intro 3: 2.4
3.10 Even(x+y) Def of Even
3. (0dd(x) A Odd(y)) — Even(x+y) DPR

4, Vy ((Odd(x) A Odd(y)) — Even(x+y)) IntroV
5. VxVy ((0dd(x) A Odd(y)) — Even(x+y)) Intro ¥V



Predicate Definitions - -
Domain of Discourse

Even(x)=3y (x = 2y)
Even and Odd 0dd(x) = 3y (x = 2y + 1) | Integers

Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for
some integer a and y = 2b+1 for some integer b. Their
sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so
x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd
integers is even. i




Predicate Definitions

Even(x) =3y (x = 2y)

Domain of Discourse

Integers

Prove “The sum of two odd numbers is even.”

Ve

Proof: Let x and y be arbitrary odd integers.

Then, x = 2a+1 for some integer a and y = 2b+1 for some
integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 =

2(a+b+1), so x+vy is, by definition, even.

Since x and y were arbitrary, the sum of any two odd

integers is even.
H

Vx Yy ((Odd(x) A Odd(y))—Even(x+y))

—

e




