CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs, English Proofs

MY MATH TEACHER WAS A BIG BELIEVER IN PROOF BY INTIMIDATION.

Last class: Inference Rules for Quantifiers

** by special, we mean that c is a name for a value where P(c) is true.We can't use anything else about that value, so c has to be a NEW name!.

Domain of Discourse Integers

Predicate Definitions
Even(x) :=
$$\exists y (x = 2 \cdot y)$$

Odd(x) := $\exists y (x = 2 \cdot y + 1)$

> Prove "There is an even number" Formally: prove $\exists x Even(x)$ Find 1, 0 = 2.0 $V_{7} = Z_{Y}(0 = 2.Y)$ 3. Even(0) 4. Even(x)

algebra Sofra 7:1 def of Even: 2 intro Z: 3

Domain of Discourse Integers

Predicate Definitions
Even(x) :=
$$\exists y (x = 2 \cdot y)$$

Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

1.	2 = 2 · 1	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Definition of Even: 2
4.	∃x Even(x)	Intro ∃: 3

A Prime Example

Prove "There is an even prime number" Formally: prove $\exists x (Even(x) \land Prime(x))$

A Prime Example

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1.	$2 = 2 \cdot 1$	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Def of Even: 3
4 .	Prime(2)*	Property of integers
5.	Even(2) ^ Prime(2)	Intro ∧: 2, 4
6.	∃x (Even(x) ∧ Prime(x))	Intro ∃: 5

* Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers

Prove: "The square of any even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers

Prove: "The square of any even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer2.1 Even(a)XVVV

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers

Prove: "The square of any even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

- **1.** Let a be an arbitrary integer**2.1** Even(a)Assumption**2.2** $\exists y (a = 2y)$ Definition of Even
- 2.5 ∃y (a² = 2y)
 2.6 Even(a²)
 2. Even(a)→Even(a²)
 3. ∀x (Even(x)→Even(x²))

Period Provide Pro

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers

Need $a^2 = 2c$

for some c

Prove: "The square of any even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer**2.1** Even(a)Assumption**2.2** $\exists y (a = 2y)$ Definition of Even

- **2.5** ∃y (a² = 2y)
- **2.6** Even(a²)
- **2.** Even(a) \rightarrow Even(a²)
- **3.** $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \exists : Definition of Even Direct proof Intro \forall : 1,2

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers

These rules need some caveats...

There are extra conditions on using these rules:

Without those rules, it is possible to infer claims that are false

Without the rules, one could infer false claims...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \neq x)$ is True but $\exists y \forall x (y \neq x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \neq x)$ Given Let a be an arbitrary integer
- Let a be an
 ∃y (y ≠ a)
 b ≠ a
- **5.** $\forall x (b \neq x)$ Intro $\forall : 2,4$

6. $\exists y \forall x (y \neq x)$ Intro $\exists : 5$

Elim \forall : **1**

Elim $\exists: 3$ (b new constant)

With the extra conditions we can kill the bad proof...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \neq x)$ is True but $\exists y \forall x (y \neq x)$ is False

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

Elim
$$\exists \exists x P(x)$$
Intro \forall Let a be arbitrary*"...P(a) $\therefore P(c)$ for some special** c $\therefore \forall x P(x)$ ** c is a NEW name. $\forall x P(x)$ List all dependencies for c.* in the domain of P. No other
name in P depends on a.

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
 - almost all math (and theory CS) done in Predicate Logic
- But they are tedious and impractical
 - e.g., applications of commutativity and associativity
 - Russell & Whitehead's formal proof that 1+1 = 2 appears after more than 100 pages of build up
 - we allowed ourselves to cite "Arithmetic", "Algebra", etc.
- Similar situation exists in programming...

a := ADD(i, 1) b := MOD(a, n) c := ADD(arr, b) d := LOAD(c) e := ADD(arr, i) STORE(e, d) arr[i] = arr[(i+1) % n];

Assembly Language

High-level Language

Given Given Elim ∧: 1 Double Negation: 4 Elim ∨: 3, 5 Modus Ponens: 2, 6

Assembly Language for Programs

Assembly Language for Proofs

Given Given ∧ Elim: 1 Double Negation: 4 ∨ Elim: 3, 5 MP: 2, 6

what is the "Java" for proofs?

Assembly Language for Proofs

High-level Language for Proofs

Given Given ∧ Elim: 1 Double Negation: 4 ∨ Elim: 3, 5 MP: 2, 6

Assembly Language for Proofs

High-level Language for Proofs

Given Given ∧ Elim: 1 Double Negation: 4 ∨ Elim: 3, 5 MP: 2, 6

Assembly Language for Proofs

High-level Language for Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
 - as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
 - also easy to check with practice

(almost all actual math and theory CS is done this way)

 English proof is correct if the <u>reader</u> is convinced that they could translate it into a formal proof

(the reader is the "compiler" for English proofs)

Prove: "The square of every even number is even." Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$ **1.** Let a be an arbitrary integer **2.1** Even(a) Assumption **2.2** ∃y (a = 2y) **Definition of Even 2.3** a = 2bElim 3 **2.4** $a^2 = 4b^2 = 2(2b^2)$ Algebra **2.5** $\exists y (a^2 = 2y)$ Intro **E 2.6** Even(**a**²) **Definition of Even 2.** Even(a) \rightarrow Even(a²) Direct Proof **3.** $\forall x (Even(x) \rightarrow Even(x^2))$ Intro ∀

Prove "The square of every even integer is even."

Let a be an arbitrary integer. 1. Let a be an arbitrary integer

Suppose a is even.2.1 Even(a)AssumptionThen, by definition, a = 2b for
some integer b. $2.2 \exists y (a = 2y)$
2.3 a = 2bDefinition
Elim \exists

Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$.

So a² is, by definition, even.

Since a was arbitrary, we have shown that the square of every even number is even. **2.4** $a^2 = 4b^2 = 2(2b^2)$ Algebra

2.5 $\exists y (a^2 = 2y)$ Intro \exists **2.6** Even(a^2)Definition

Even(a)→Even(a²)
 ∀x (Even(x)→Even(x²))

Direct Proof Intro ∀ Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary integer.

Suppose **a** is even. Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer **b**. Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

Prove "The square of every even integer is even."

Proof: Let **a** be an arbitrary **even** integer.

Then, by definition, $\mathbf{a} = 2\mathbf{b}$ for some integer **b**. Squaring both sides, we get $\mathbf{a}^2 = 4\mathbf{b}^2 = 2(2\mathbf{b}^2)$. So \mathbf{a}^2 is, by definition, is even.

Since **a** was arbitrary, we have shown that the square of every even number is even. ■

 $\forall x (Even(x) \rightarrow Even(x^2))$

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$ Domain of Discourse Integers

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Let x be an arbitrary integer
 Let y be an arbitrary integer

Since x and y were arbitrary, the sum of any odd integers is even.

- 3. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$
- **4.** $\forall \mathbf{y} ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y}))$ Intro \forall
- **5.** $\forall \mathbf{x} \forall \mathbf{y} ((\text{Odd}(\mathbf{x}) \land \text{Odd}(\mathbf{y})) \rightarrow \text{Even}(\mathbf{x}+\mathbf{y}))$ Intro \forall

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

1. Let **x** be an arbitrary integer

2. Let y be an arbitrary integer

3.1 $Odd(x) \land Odd(y)$ Assumption

so x+y is even.

Since x and y were arbitrary, the sum of any odd integers is even.

3.9 Even(x+y)

- **3.** $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ DPR
- **4.** $\forall \mathbf{y} ((\text{Odd}(\mathbf{x}) \land \text{Odd}(\mathbf{y})) \rightarrow \text{Even}(\mathbf{x}+\mathbf{y}))$ Intro \forall
- **5.** $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$ Intro \forall

Even and Odd

Even(x) = $\exists y (x = 2y)$ Odd(x) = $\exists y (x = 2y + 1)$

Prove "The sum of two odd numbers is even." Formally, prove $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

so x+y is even.

Since x and y were arbitrary, the sum of any odd integers is even.

- **1**. Let **x** be an arbitrary integer
- 2. Let y be an arbitrary integer
 - **3.1** $Odd(\mathbf{x}) \land Odd(\mathbf{y})$ Assumption**3.2** $Odd(\mathbf{x})$ Elim \land : 2.1**3.3** $Odd(\mathbf{y})$ Elim \land : 2.1

3.9 Even(x+y)

- **3.** $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ DPR
- **4.** $\forall \mathbf{y} ((\text{Odd}(\mathbf{x}) \land \text{Odd}(\mathbf{y})) \rightarrow \text{Even}(\mathbf{x}+\mathbf{y}))$ Intro \forall
- **5.** $\forall \mathbf{x} \forall \mathbf{y} ((\text{Odd}(\mathbf{x}) \land \text{Odd}(\mathbf{y})) \rightarrow \text{Even}(\mathbf{x}+\mathbf{y}))$ Intro \forall

Even(x) $\equiv \exists y (x=2y)$ Odd(x) $\equiv \exists y (x=2y+1)$ Domain: Integers

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b.

so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer2. Let y be an arbitrary integer3.1 $Odd(x) \land Odd(y)$ Assumption3.2 Odd(x)Elim \land : 2.13.3 Odd(y)Elim \land : 2.13.4 $\exists z (x = 2z+1)$ Def of Odd: 2.23.5 x = 2a+1Elim \exists : 2.43.6 $\exists z (y = 2z+1)$ Def of Odd: 2.33.7 y = 2b+1Elim \exists : 2.5

3.9 ∃z (x+y = 2z)
 Intro ∃: 2.4

 3.10 Even(x+y)
 Def of Even

3. $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ DPR **4.** $\forall \mathbf{y} ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y}))$ Intro \forall

5. $\forall \mathbf{x} \forall \mathbf{y} ((\text{Odd}(\mathbf{x}) \land \text{Odd}(\mathbf{y})) \rightarrow \text{Even}(\mathbf{x}+\mathbf{y}))$ Intro \forall

Even(x) = $\exists y (x=2y)$ $Odd(x) \equiv \exists y (x=2y+1)$ **English Proof: Even and Odd Domain: Integers** 2 All + 2 bil = 7 6, 42 bil Prove "The sum of two odd numbers is even." XH1 = **1.** Let **x** be an arbitrary integer $= 2\omega^{XL}$ = 2(4+1)+i Let x and y be arbitrary integers. 2. Let y be an arbitrary integer **3.1** $Odd(\mathbf{x}) \land Odd(\mathbf{y})$ Assumption 3.2 Odd(x) Elim Λ : 2.1 Suppose that both are odd. 3.3 Odd(**y**) Elim ∧: 2.1 **3.4** $\exists z (x = 2z+1)$ Def of Odd: 2.2 Then, we have x = 2a+1 for 3.5 **x** = 2**a**+1 Elim 3: 2.4 some integer a and y = 2b+1 for some integer b. **3.6** $\exists z (y = 2z+1)$ Def of Odd: 2.3 **3.7 y** = 2**b**+1 Elim 3: 2.5 Their sum is x+y = ... = 2(a+b+1)**3.8** x+y = 2(a+b+1)Algebra **3.9** $\exists z (x+y = 2z)$ Intro $\exists: 2.4$ so x+y is, by definition, even. 3.10 Even(**x**+**y**) Def of Even Since x and y were arbitrary, the **3.** $(Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y})$ DPR 4. $\forall \mathbf{y} ((Odd(\mathbf{x}) \land Odd(\mathbf{y})) \rightarrow Even(\mathbf{x}+\mathbf{y}))$ Intro ∀ sum of any odd integers is even.

5. $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$ Intro \forall

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■

Even(x) = $\exists y (x = 2y)$

 $Odd(x) \equiv \exists y \ (x = 2y + 1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary **odd** integers.

Even and Odd

Then, x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even.

 $\forall x \forall y ((Odd(x) \land Odd(y)) \rightarrow Even(x+y))$