CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs, English Proofs

Last class: Inference Rules for Quantifiers

$* *$ by special, we mean that c is a
name for a value where $\mathrm{P}(\mathrm{c})$ is true.
We can't use anything else about that
value, so c has to be a NEW name!.

A Not so Odd Example

Domain of Discourse
Integers
Predicate Definitions
$\operatorname{Even}(x):=\exists y(x=2 \cdot y)$
$\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1)$
\rightarrow Prove "There is an even number" Formally: prove $\exists x$ Even (x)
为 $1100=2.0$
algebra
L2. by $(0=2 \cdot y)$
intro \exists : 1
3. Even (0)
def of Even: 2
4. Ex. Even (x) intro I: 3

A Not so Odd Example

Domain of Discourse
Integers

Predicate Definitions
Even $(x):=\exists y(x=2 \cdot y)$ $\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1)$

Prove "There is an even number"
Formally: prove $\exists x$ Even (x)

1.	$\mathbf{2 = 2 \cdot 1}$	Algebra
2.	$\exists y(\mathbf{2}=\mathbf{2} \cdot \mathrm{y})$	Intro $\exists: \mathbf{1}$
3.	Even (2)	Definition of Even: $\mathbf{2}$
4.	$\exists x \operatorname{Even}(x)$	Intro $\exists: 3$

A Prime Example

Domain of Discourse
Integers

Predicate Definitions
$\operatorname{Even}(x):=\exists y(x=2 \cdot y)$
$\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1)$
$\operatorname{Prime}(x):=$ " $x>1$ and $x \neq a \cdot b$ for
all integers a, b with $1<a<x$ "

Prove "There is an even prime number"
Formally: prove $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

A Prime Example

Domain of Discourse
Integers

Predicate Definitions
Even $(\mathrm{x}):=\exists \mathrm{y}(\mathrm{x}=2 \cdot \mathrm{y})$
$\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1)$
Prime $(x):=" x>1$ and $x \neq a \cdot b$ for all integers a, b with $1<a<x$ "

Prove "There is an even prime number"
Formally: prove $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

1. $2=2 \cdot 1$
2. $\exists y(2=2 \cdot y)$
3. Even(2)
4. Prime(2)*
5. Even(2) \wedge Prime(2)
6. $\quad \exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

Algebra
Intro \exists : 1
Def of Even: 3
Property of integers
Intro \wedge : 2, 4
Intro \exists : 5

Inference Rules for Quantifiers: First look

** c is a NEW name.

$A=B$

* in the domain of P
not line the others

$$
\begin{aligned}
& \text { Even }(x):=\exists y \quad(x=2 y) \\
& \operatorname{Odd}(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Even and Odd

| Intro \forall"Let a be arbitrary*"...P(a) Eliz $\exists$$\quad \exists \mathrm{xP}(\mathrm{x})$ | |
| :---: | :---: | :---: |
| $\therefore \quad \forall \mathrm{xP}(\mathrm{x})$ | $\therefore \mathrm{P}(\mathrm{c})$ for some special** c |

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \operatorname{Odd}(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Even and Odd

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Intro \forall : 1,2

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \operatorname{Odd}(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Even and Odd
Intro \forall "Let a be arbitrary*"...P(a) Elim ヨ $\exists \mathrm{xP}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special ${ }^{* *} \mathrm{c}$
Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
bimf 2.1 Even(a) Assumption

- wifo \uparrow 2.6 $\operatorname{Even}\left(a^{2}\right)$

2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
?
Direct proof
Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \operatorname{Odd}(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall "Let a be arbitrary*"...P(a) Elim $\exists \quad \exists x \mathrm{P}(\mathrm{x})$

$$
\begin{array}{ll|l}
\hline \therefore & \forall \mathrm{xP}(\mathrm{x}) & \therefore \mathrm{P}(\mathrm{c}) \text { for some special } * * \mathrm{c} \\
\hline
\end{array}
$$

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
Assumption
Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Definition of Even
Direct Proof
Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \operatorname{Odd}(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall "Let a be arbitrary*"...P(a) Elim $\exists \quad \exists x \mathrm{P}(\mathrm{x})$

$$
\begin{array}{ll|l}
\hline \therefore & \forall \mathrm{xP}(\mathrm{x}) & \therefore \mathrm{P}(\mathrm{c}) \text { for some special } * * \mathrm{c} \\
\hline
\end{array}
$$

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Definition of Even
Direct proof
Intro $\forall: 1,2$

Assumption

Intro \exists : ?
Need $\mathrm{a}^{2}=2 \mathrm{c}$
for some c

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \text { Odd }(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

"Let a be arbitrary*"...P(a)	
$\therefore \quad \forall \mathrm{xP}(\mathrm{x})$	

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y)$
2.3 a $=2 \mathrm{~b}$
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Assumption
Definition of Even
Elim \exists : b

Intro \exists : ?
Need $\mathrm{a}^{2}=2 \mathrm{c}$
for some c

Definition of Even
Direct proof
Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \operatorname{Odd}(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall "Let a be arbitrary*"...P(a) Elim ヨ $\exists \mathrm{xP}(\mathrm{x})$

$$
\begin{array}{ll|l}
\therefore & \forall \mathrm{xP}(\mathrm{x}) & \therefore \mathrm{P}(\mathrm{c}) \text { for some special } * * \mathrm{c} \\
\hline
\end{array}
$$

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(\mathbf{a}=2 \mathrm{y})$
$2.3 a=2 b$
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right) \quad$ Algebra
$2.5 \exists y\left(\mathbf{a}^{2}=2 \mathrm{y}\right)$
2.6 Even $\left(\mathbf{a}^{2}\right)$
2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Assumption"
Definition of Even
Elim \exists : b

Intro \exists
Definition of Even
Direct Proof
Intro \forall : 1,2

These rules need some caveats...

There are extra conditions on using these rules:

Without those rules, it is possible to infer claims that are false

Without the rules, one could infer false claims...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y(y \neq x)$ is True but $\exists y \forall x(y \neq x)$ is False

BAD "PROOF"

1. $\forall x \exists y(y \neq x) \quad$ Given
2. Let a be an arbitrary integer

$$
\begin{array}{lll}
\text { 3. } & \exists \mathrm{y}(\mathrm{y} \neq \mathrm{a}) & \text { Elim } \forall: 1 \\
\text { 4. } \quad \mathrm{b} \neq \mathrm{a} & \text { Elim } \exists: 3(\mathrm{~b} \\
\text { 5. } & \forall \mathrm{x}(\mathrm{~b} \neq \mathrm{x}) & \text { Intro } \forall: 2,4 \\
\text { 6. } & \exists \mathrm{y} \forall \mathrm{x}(\mathrm{y} \neq \mathrm{x}) & \text { Intro } \exists: 5
\end{array}
$$

With the extra conditions we can kill the bad proof...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y(y \neq x)$ is True but $\exists y \forall x(y \neq x)$ is False
BAD "PROOF" KILLED

1. $\forall x \exists y(y \neq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists y(y \neq a) \quad$ Elim $\forall: 1$
4. $b \neq a \quad$ Elim $\exists: 3$ (b depends on a)
5. $\exists y \forall x(y \neq x) \quad$ Intro $\exists: 5$

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version


```
** c is a NEW name.
List all dependencies for c.
```


Formal Proofs

- In principle, formal proofs are the standard for what it means to be "proven" in mathematics
- almost all math (and theory CS) done in Predicate Logic
- But they are tedious and impractical
- e.g., applications of commutativity and associativity
- Russell \& Whitehead's formal proof that $1+1=2$ appears after more than 100 pages of build up
- we allowed ourselves to cite "Arithmetic", "Algebra", etc.
- Similar situation exists in programming...

Programming

$$
\begin{aligned}
& \mathrm{a}:=\operatorname{ADD}(\mathrm{i}, 1) \\
& \mathrm{b}:=\operatorname{MOD}(\mathrm{a}, \mathrm{n}) \\
& \mathrm{c}:=\operatorname{ADD}(\operatorname{arr}, \mathrm{b}) \\
& \mathrm{d}:=\operatorname{LOAD}(\mathrm{c}) \\
& \mathrm{e}:=\operatorname{ADD}(\operatorname{arr}, \mathrm{i}) \quad \\
& \text { STORE }(\mathrm{e}, \mathrm{~d}) \quad \operatorname{arr}[\mathrm{i}]=\operatorname{arr}[(\mathrm{i}+1) \% \mathrm{n}] ;
\end{aligned}
$$

Assembly Language
High-level Language

Programming vs Proofs

$$
\begin{aligned}
& \mathrm{a}:=\operatorname{ADD}(\mathrm{i}, 1) \\
& \mathrm{b}:=\operatorname{MOD}(\mathrm{a}, \mathrm{n}) \\
& \mathrm{c}:=\operatorname{ADD}(\mathrm{arr}, \mathrm{~b}) \\
& \mathrm{d}:=\operatorname{LOAD}(\mathrm{c}) \\
& \mathrm{e}:=\operatorname{ADD}(\mathrm{arr}, \mathrm{i}) \\
& \operatorname{STORE}(\mathrm{e}, \mathrm{~d})
\end{aligned}
$$

Given
Given
Elim \wedge : 1
Double Negation: 4
Elim V: 3, 5
Modus Ponens: 2, 6

Assembly Language
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs
what is the "Java" for proofs?

High-level Language
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
English?
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

High-level Language
for Proofs

Proofs

Given
Given
\wedge Elim: 1
Double Negation: 4
V Elim: 3, 5
MP: 2, 6

Assembly Language
for Proofs

High-level Language
for Proofs

Proofs

- Formal proofs follow simple well-defined rules and should be easy for a machine to check
- as assembly language is easy for a machine to execute
- English proofs correspond to those rules but are designed to be easier for humans to read
- also easy to check with practice
(almost all actual math and theory CS is done this way)
- English proof is correct if the reader is convinced that they could translate it into a formal proof
(the reader is the "compiler" for English proofs)

$$
\begin{aligned}
& \text { Even }(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

English Proof: Even and Odd

$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$
Domain: Integers

Prove "The square of every even integer is even."

Let a be an arbitrary integer.
Suppose a is even.
Then, by definition, $a=2 b$ for some integer b.

Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$.

So a^{2} is, by definition, even.

Since a was arbitrary, we have shown that the square of every even number is even.

1. Let a be an arbitrary integer

> 2.1 Even(a) Assumption

$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right)$ Algebra
$2.5 \exists y\left(a^{2}=2 y\right) \quad$ Intro \exists
2.6 Even $\left(\mathrm{a}^{2}\right) \quad$ Definition
2. Even $(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right) \quad$ Direct Proof
3. $\forall x\left(E v e n(x) \rightarrow E v e n\left(x^{2}\right)\right) \quad$ Intro \forall

English Proof: Even and Odd

$\operatorname{Even}(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$
Domain: Integers

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, $b y$ definition, $a=2 b$ for some integer b. Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$. So a^{2} is, by definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even.

English Proof: Even and Odd

Prove "The square of every even integer is even."

Proof: Let a be an arbitrary even integer.
Then, by definition, $a=2 b$ for some integer b. Squaring both sides, we get $a^{2}=4 b^{2}=2\left(2 b^{2}\right)$. So a^{2} is, $b y$ definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even.

$$
\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)
$$

Predicate Definitions
 $\operatorname{Even}(x) \equiv \exists y(x=2 y)$ $O d d(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.

Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer
3. $\widehat{(O d d}(x) \wedge \operatorname{Odd}(y) \pi \rightarrow \operatorname{Even}(x+y)$
4. $\forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow$ Even $(\mathbf{x}+\mathbf{y})) \quad$ Intro \forall
5. $\forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}))$ Intro \forall

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.
so $x+y$ is even.
Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer
3.1 $\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y}) \quad$ Assumption
3.9 Even $(x+y)$
3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow$ Even $(\mathrm{x}+\mathrm{y})) \quad$ Intro \forall
5. $\forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathrm{x}+\mathrm{y}))$ Intro \forall

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Formally, prove $\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E v e n(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.
so $x+y$ is even.
Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1 $\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
3.2 $\operatorname{Odd}(\mathbf{x})$	$E \lim \wedge: 2.1$
3.3 $\operatorname{Odd}(\mathbf{y})$	$\operatorname{Elim} \wedge: 2.1$

3.9 Even($\mathrm{x}+\mathrm{y}$)
3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad \operatorname{DPR}$
4. $\forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow$ Even $(\mathrm{x}+\mathrm{y})) \quad$ Intro \forall
5. $\forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow$ Even $(x+y))$ Intro \forall

English Proof: Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove "The sum of two odd numbers is even."

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have $x=2 a+1$ for some integer a and $y=2 b+1$ for some integer b.
so $x+y$ is, by definition, even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1	Odd(\mathbf{x}) \wedge Odd(\mathbf{y})	Assumption
3.2	$\operatorname{Odd}(\mathbf{x})$	Elim \wedge : 2.1
3.3	$\operatorname{Odd}(\mathbf{y})$	Elim \wedge : 2.1
3.4	$\exists \mathrm{z}(\mathrm{x}=2 \mathrm{z}+1)$	Def of Odd: 2.2
3.5	$x=2 a+1$	Elim 7: 2.4
3.6	$\exists z(y=2 z+1)$	Def of Odd: 2.3
3.7	$y=2 b+1$	Elim $3: 2.5$

3.9 $\exists \mathrm{z}(\mathrm{x}+\mathrm{y}=2 \mathrm{z})$	Intro $\exists: 2.4$
3.10 $\operatorname{Even}(\mathrm{x}+\mathrm{y})$	Def of Even

3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y})) \quad$ Intro \forall
5. $\forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}))$ Intro \forall

English Proof: Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x) \equiv \exists y \quad(x=2 y) \\
& \operatorname{Odd}(x) \equiv \exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove "The sum of two odd numbers is even." $x+1=2 a x+2 b x($

Let x and y be arbitrary integers.

Suppose that both are odd.

Then, we have $x=2 a+1$ for some integer a and $y=2 b+1$ for some integer b.

Their sum is $x+y=\ldots=2(a+b+1)$
so $x+y$ is, by definition, even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer $\smile 2(h+b)$

$3.1 \operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})$	Assumption
$3.2 \operatorname{Odd}(\mathbf{x})$	Elim $\wedge: 2.1$
$3.3 \operatorname{Odd}(\mathbf{y})$	Elim $\wedge: 2.1$
$3.4 \quad \exists \mathrm{z}(\mathrm{x}=2 \mathrm{z}+1)$	Def of Odd: 2.2
$3.5 \mathrm{x}=2 \mathrm{a}+1$	Elim $\exists: 2.4$
$3.6 \quad \exists \mathrm{z}(\mathrm{y}=2 \mathrm{z}+1)$	Def of Odd: 2.3
$3.7 \mathrm{y}=2 \mathrm{~b}+1$	Elim $\exists: 2.5$
$3.8 \mathrm{x}+\mathrm{y}=2(\mathbf{a}+\mathbf{b + 1})$	Algebra
$3.9 \exists z(\mathrm{x}+\mathrm{y}=2 \mathrm{z})$	Intro $\exists: 2.4$
$3.10 \operatorname{Even}(\mathrm{x}+\mathrm{y})$	Def of Even

3. $(\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y}) \quad$ DPR
4. $\forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow \operatorname{Even}(\mathbf{x}+\mathbf{y})) \quad$ Intro \forall
5. $\quad \forall \mathbf{x} \forall \mathbf{y}((\operatorname{Odd}(\mathbf{x}) \wedge \operatorname{Odd}(\mathbf{y})) \rightarrow$ Even $(\mathbf{x}+\mathbf{y}))$ Intro \forall

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Proof: Let x and y be arbitrary integers.
Suppose that both are odd. Then, we have $x=2 a+1$ for some integer a and $y=2 b+1$ for some integer b. Their sum is $x+y=(2 a+1)+(2 b+1)=2 a+2 b+2=2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even. \quad

Even and Odd

Predicate Definitions
Even $(x) \equiv \exists y(x=2 y)$
$\operatorname{Odd}(x) \equiv \exists y(x=2 y+1)$

Prove "The sum of two odd numbers is even."

Proof: Let x and y be arbitrary odd integers.
Then, $x=2 a+1$ for some integer a and $y=2 b+1$ for some integer b. Their sum is $x+y=(2 a+1)+(2 b+1)=2 a+2 b+2=$ $2(a+b+1)$, so $x+y$ is, by definition, even.
Since x and y were arbitrary, the sum of any two odd integers is even.
$\forall x \forall y((\operatorname{Odd}(x) \wedge \operatorname{Odd}(y)) \rightarrow E \operatorname{Even}(x+y))$

