CSE 311: Foundations of Computing

Lecture 8: Predicate Logic Proofs, English Proofs

The Axiom of Choice allows you to select one element from each set in a collection and have it executed as an example to the others.

My Math teacher was a big believer in proof by intimidation.
Last class: Inference Rules for Quantifiers

- **Intro ∃**:

 \[P(c) \text{ for some } c \]

 \[\therefore \exists x \ P(x) \]

- **Elim ∀**:

 \[\forall x \ P(x) \]

 \[\therefore P(a) \text{ for any } a \]

- **Intro ∀**:

 \[\exists x \ P(x) \]

 \[\therefore P(c) \text{ for some } \text{special}^*^* \ c \]

- **Elim ∃**:

 \[\exists x \ P(x) \]

 \[\therefore P(c) \text{ for some } \text{special}^*^* \ c \]

** by special, we mean that c is a name for a value where P(c) is true. We can’t use anything else about that value, so c has to be a NEW name!.
A Not so Odd Example

<table>
<thead>
<tr>
<th>Domain of Discourse</th>
<th>Predicate Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Integers</td>
<td></td>
</tr>
</tbody>
</table>

Even(x) := ∃y (x = 2·y)
Odd(x) := ∃y (x = 2·y + 1)

→ Prove “There is an even number”

Formally: prove ∃x Even(x)

Proof:
1. 0 = 2·0
2. ∃y (0 = 2·y)
3. Even(0)
4. ∃x. Even(x)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>algebra</td>
<td>Intro ι: 1</td>
</tr>
<tr>
<td>def of Even: 2</td>
<td>Intro ι: 3</td>
</tr>
</tbody>
</table>
A Not so Odd Example

<table>
<thead>
<tr>
<th>Domain of Discourse</th>
<th>Predicate Definitions</th>
</tr>
</thead>
</table>
| Integers | Even(x) := ∃y (x = 2·y)
| | Odd(x) := ∃y (x = 2·y + 1) |

Prove “There is an even number”

Formally: prove ∃x Even(x)

1. 2 = 2·1
 Algebra
2. ∃y (2 = 2·y)
 Intro ∃: 1
3. Even(2)
 Definition of Even: 2
4. ∃x Even(x)
 Intro ∃: 3
A Prime Example

Predicate Definitions

<table>
<thead>
<tr>
<th>Domain of Discourse</th>
<th>Even(x) := ∃y (x = 2⋅y)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Odd(x) := ∃y (x = 2⋅y + 1)</td>
</tr>
<tr>
<td></td>
<td>Prime(x) := “x > 1 and x≠a⋅b for all integers a, b with 1<a<x”</td>
</tr>
</tbody>
</table>

Prove “There is an even prime number”
Formally: prove ∃x (Even(x) ∧ Prime(x))
A Prime Example

Predicate Definitions

Even(x) := ∃y (x = 2⋅y)
Odd(x) := ∃y (x = 2⋅y + 1)
Prime(x) := “x > 1 and x≠a⋅b for all integers a, b with 1<a<x”

Prove “There is an even prime number”

Formally: prove ∃x (Even(x) ∧ Prime(x))

1. 2 = 2⋅1 Algebra
2. ∃y (2 = 2⋅y) Intro ∃: 1
3. Even(2) Def of Even: 3
4. Prime(2)* Property of integers
5. Even(2) ∧ Prime(2) Intro ∧: 2, 4
6. ∃x (Even(x) ∧ Prime(x)) Intro ∃: 5

* Later we will further break down “Prime” using quantifiers to prove statements like this
Inference Rules for Quantifiers: First look

- Intro ∃: P(c) for some c
 \[\therefore \exists x \ P(x) \]

- Elim ∀: \[\forall x \ P(x) \]
 \[\therefore \ P(a) \text{ (for any } a) \]

- Elim ∃: \[\exists x \ P(x) \]
 \[\therefore \ P(c) \text{ for some } \text{special} \text{** } c \]

- Intro ∀: “Let a be arbitrary*”...P(a)
 \[\therefore \forall x \ P(x) \]

** c is a NEW name.

* in the domain of P

Not like the others
Even and Odd

Prove: “The square of any even number is even.”

Formal proof of: \(\forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2)) \)
Even and Odd

Prove: “The square of any even number is even.”

Formal proof of: \(\forall x \, (\text{Even}(x) \rightarrow \text{Even}(x^2)) \)

1. Let \(a \) be an arbitrary integer

2. \(\text{Even}(a) \rightarrow \text{Even}(a^2) \)

3. \(\forall x \, (\text{Even}(x) \rightarrow \text{Even}(x^2)) \)

Intro \(\forall: 1,2 \)
Even and Odd

“Let a be arbitrary*” ... \(P(a) \)
\[
\therefore \quad \forall x \ P(x)
\]

Elim \(\exists \)
\[
\exists x \ P(x)
\]
\[
\therefore P(c) \text{ for some special** c}
\]

Prove: “The square of any even number is even.”

Formal proof of: \(\forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2)) \)

1. Let \(a \) be an arbitrary integer

2.1 \(\text{Even}(a) \) Assumption

2. \(\text{Even}(a) \rightarrow \text{Even}(a^2) \)

2.6 \(\text{Even}(a^2) \)

3. \(\forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2)) \) Intro \(\forall \): 1,2

\(\text{Even}(x) := \exists y \ (x=2y) \)
\(\text{Odd}(x) := \exists y \ (x=2y+1) \)
Domain: Integers
Even and Odd

Prove: “The square of any even number is even.”

Formal proof of: \(\forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2)) \)

1. **Let** \(a \) **be an arbitrary integer**
 2.1 \(\text{Even}(a) \) \hspace{1cm} Assumption
 2.2 \(\exists y \ (a = 2y) \) \hspace{1cm} Definition of Even

2. \(\exists y \ (a^2 = 2y) \)
 2.5 \(\exists y \ (a^2 = 2y) \) \hspace{1cm} ?
 2.6 \(\text{Even}(a^2) \) \hspace{1cm} Definition of Even

2. **Even**(a)→Even(a^2)
3. **\(\forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2)) \)**
 Intro \(\forall \): 1,2

Definitions
- \(\text{Even}(x) := \exists y \ (x = 2y) \)
- \(\text{Odd}(x) := \exists y \ (x = 2y + 1) \)

Domain: Integers
Even and Odd

```
Prove: “The square of any even number is even.”

Formal proof of: \( \forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2)) \)

1. Let \( a \) be an arbitrary integer
   
   \begin{align*}
   2.1 & \quad \text{Even}(a) \quad \text{Assumption} \\
   2.2 & \quad \exists y \ (a = 2y) \quad \text{Definition of Even}
   \end{align*}

   \begin{align*}
   2.5 & \quad \exists y \ (a^2 = 2y) \quad \text{Intro } \exists: \quad ? \\
   2.6 & \quad \text{Even}(a^2) \quad \text{Definition of Even}
   \end{align*}

2. \( \text{Even}(a) \rightarrow \text{Even}(a^2) \) \quad \text{Direct proof}

3. \( \forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2)) \) \quad \text{Intro } \forall: \ 1, 2
```

*Intro \(\forall \): “Let a be arbitrary”

*Intro \(\exists \): \(\exists \) \(x \) \(P(x) \)

\(\forall x \ P(x) \)

\(\exists \) \(c \) \(P(c) \) for some special \(c \)
Even and Odd

Prove: “The square of any even number is even.”

Formal proof of: $\forall x (\text{Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer
 - 2.1 $\text{Even}(a)$ Assumption
 - 2.2 $\exists y (a = 2y)$ Definition of Even
 - 2.3 $a = 2b$ Elim $\exists: b$
 - 2.5 $\exists y (a^2 = 2y)$ Intro \exists: \Box for some c
 - 2.6 $\text{Even}(a^2)$ Definition of Even
2. $\text{Even}(a) \rightarrow \text{Even}(a^2)$ Direct proof
3. $\forall x (\text{Even}(x) \rightarrow \text{Even}(x^2))$ Intro \forall: 1,2

Even(x) := $\exists y$ ($x = 2y$)
Odd(x) := $\exists y$ ($x = 2y + 1$)
Domain: Integers
Even and Odd

“Let a be arbitrary*”...P(a) ∴ ∀x P(x)

Prove: “The square of any even number is even.”

Formal proof of: ∀x (Even(x) → Even(x^2))

1. Let a be an arbitrary integer
 2.1 Even(a) Assumption
 2.2 ∃y (a = 2y) Definition of Even
 2.3 a = 2b Elim ∃: b
 2.4 a^2 = 4b^2 = 2(2b^2) Algebra
 2.5 ∃y (a^2 = 2y) Intro ∃
 2.6 Even(a^2) Definition of Even

2. Even(a)→Even(a^2) Direct Proof
3. ∀x (Even(x)→Even(x^2)) Intro ∀: 1,2

Even(x) := ∃y (x=2y)
Odd(x) := ∃y (x=2y+1)
Domain: Integers
These rules need some caveats...

There are extra conditions on using these rules:

```
Intro ∀
“Let a be arbitrary*”...P(a)

∀x P(x)


Elim ∃

∃x P(x)

:: P(c) for some special** c

* in the domain of P. No other name in P depends on a

** c is a NEW name. List all dependencies for c.
```

Without those rules, it is possible to infer claims that are false
Without the rules, one could infer false claims...

There are extra conditions on using these rules:

- \(\exists x \, P(x) \) \implies \(P(c) \) for some special** \(c \)
- \(\forall x \, P(x) \)

* in the domain of \(P \)

** \(c \) has to be a NEW name.

Over integer domain: \(\forall x \exists y \, (y \neq x) \) is True but \(\exists y \forall x \, (y \neq x) \) is False

BAD “PROOF”

1. \(\forall x \exists y \, (y \neq x) \) Given
2. Let \(a \) be an arbitrary integer
3. \(\exists y \, (y \neq a) \) Elim \(\forall: \, 1 \)
4. \(b \neq a \) Elim \(\exists: \, 3 \) (\(b \) new constant)
5. \(\forall x \, (b \neq x) \) Intro \(\forall: \, 2,4 \)
6. \(\exists y \forall x \, (y \neq x) \) Intro \(\exists: \, 5 \)
With the extra conditions we can kill the bad proof...

There are extra conditions on using these rules:

1. \[\forall x \exists y \ (y \neq x) \] is True but \[\exists y \forall x \ (y \neq x) \] is False

BAD “PROOF” KILLED

1. \[\forall x \exists y \ (y \neq x) \] Given
2. Let \(a \) be an arbitrary integer
3. \[\exists y \ (y \neq a) \] Elim \(\forall: 1 \)
4. \[b \neq a \]Elim \(\exists: 3 \) (\(b \) depends on \(a \))
5. \[\forall x \ (b \neq x) \] Intro \(\forall: 2, 4 \)
6. \[\exists y \forall x \ (y \neq x) \] Intro \(\exists: 5 \)

Can’t get rid of \(a \) since another name in the same line, \(b \), depends on it!

Over integer domain: \(\forall x \exists y \ (y \neq x) \) is True but \(\exists y \forall x \ (y \neq x) \) is False
Inference Rules for Quantifiers: Full version

\[
\frac{P(c) \text{ for some } c}{\therefore \exists x \ P(x)} \quad \text{Intro } \exists
\]

\[
\frac{\forall x \ P(x)}{\therefore P(a) \text{ (for any } a)} \quad \text{Elim } \forall
\]

\[
\frac{\exists x \ P(x)}{\therefore P(c) \text{ for some special } \star \star \ c} \quad \text{Elim } \exists
\]

\[
\frac{\forall x \ P(x)}{\therefore \forall x \ P(x)} \quad \text{Intro } \forall
\]

“Let a be arbitrary”*...P(a)

** c is a NEW name.
List all dependencies for c.

* in the domain of P. No other name in P depends on a.
Formal Proofs

• In principle, formal proofs are the standard for what it means to be “proven” in mathematics
 – almost all math (and theory CS) done in Predicate Logic

• But they are tedious and impractical
 – e.g., applications of commutativity and associativity
 – Russell & Whitehead’s formal proof that $1+1 = 2$ appears after more than 100 pages of build up
 – we allowed ourselves to cite “Arithmetic”, “Algebra”, etc.

• Similar situation exists in programming...
Programming

\[
\begin{align*}
\text{a} & := \text{ADD}(i, 1) \\
\text{b} & := \text{MOD}(a, n) \\
\text{c} & := \text{ADD}(\text{arr}, b) \\
\text{d} & := \text{LOAD}(c) \\
\text{e} & := \text{ADD}(\text{arr}, i) \\
\text{STORE}(e, d) & \quad \text{arr}[i] = \text{arr}[(i+1) \mod n];
\end{align*}
\]
Programming vs Proofs

Given
Given
Elim \land: 1
Double Negation: 4
Elim \lor: 3, 5
Modus Ponens: 2, 6

\[a := \text{ADD}(i, 1) \]
\[b := \text{MOD}(a, n) \]
\[c := \text{ADD}(\text{arr}, b) \]
\[d := \text{LOAD}(c) \]
\[e := \text{ADD}(\text{arr}, i) \]

STORE(e, d)

Assembly Language for Programs

Assembly Language for Proofs
Proofs

<table>
<thead>
<tr>
<th>Logic</th>
<th>Given</th>
<th>Double Negation: 4</th>
<th>∨ Elim: 3, 5</th>
<th>MP: 2, 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>∧ Elim: 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>what is the “Java” for proofs?</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Assembly Language for Proofs

High-level Language for Proofs
Proofs

Given
Given
∧ Elim: 1
Double Negation: 4
∨ Elim: 3, 5
MP: 2, 6

Assembly Language for Proofs High-level Language for Proofs
<table>
<thead>
<tr>
<th>Math</th>
<th>English</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{Given})</td>
<td>(\text{Given})</td>
</tr>
<tr>
<td>(\land \text{ Elim: 1})</td>
<td>Math</td>
</tr>
<tr>
<td>Double Negation: 4</td>
<td>English</td>
</tr>
<tr>
<td>(\lor \text{ Elim: 3, 5})</td>
<td>Math</td>
</tr>
<tr>
<td>MP: 2, 6</td>
<td>English</td>
</tr>
</tbody>
</table>

Assembly Language for Proofs

High-level Language for Proofs
Proofs

• Formal proofs follow simple well-defined rules and should be easy for a machine to check
 – as assembly language is easy for a machine to execute

• English proofs correspond to those rules but are designed to be easier for humans to read
 – also easy to check with practice

(almost all actual math and theory CS is done this way)

– English proof is correct if the reader is convinced that they could translate it into a formal proof
 (the reader is the “compiler” for English proofs)
Prove: “The square of every even number is even.”

Formal proof of: $\forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

 2.1 $\text{Even}(a)$ Assumption
 2.2 $\exists y \ (a = 2y)$ Definition of Even
 2.3 $a = 2b$ Elim \exists
 2.4 $a^2 = 4b^2 = 2(2b^2)$ Algebra
 2.5 $\exists y \ (a^2 = 2y)$ Intro \exists
 2.6 $\text{Even}(a^2)$ Definition of Even

2. $\text{Even}(a) \rightarrow \text{Even}(a^2)$ Direct Proof

3. $\forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2))$ Intro \forall
Prove “The square of every even integer is even.”

Let \(a \) be an arbitrary integer.

1. Let \(a \) be an arbitrary integer.

Suppose \(a \) is even.

2.1 \(\text{Even}(a) \)
Assumption

Then, by definition, \(a = 2b \) for some integer \(b \).

2.2 \(\exists y \ (a = 2y) \)
Definition

2.3 \(a = 2b \)
Elim \(\exists \)

Squaring both sides, we get \(a^2 = 4b^2 = 2(2b^2) \).

2.4 \(a^2 = 4b^2 = 2(2b^2) \)
Algebra

So \(a^2 \) is, by definition, even.

2.5 \(\exists y \ (a^2 = 2y) \)
Intro \(\exists \)

2.6 \(\text{Even}(a^2) \)
Definition

Since \(a \) was arbitrary, we have shown that the square of every even number is even.

2. \(\text{Even}(a) \rightarrow \text{Even}(a^2) \)
Direct Proof

3. \(\forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2)) \)
Intro \(\forall \)
Prove “The square of every even integer is even.”

Proof: Let a be an arbitrary integer.

Suppose a is even. Then, by definition, $a = 2b$ for some integer b. Squaring both sides, we get $a^2 = 4b^2 = 2(2b^2)$. So a^2 is, by definition, is even.

Since a was arbitrary, we have shown that the square of every even number is even. ■
Prove “The square of every even integer is even.”

Proof: Let \(a \) be an arbitrary even integer.

Then, by definition, \(a = 2b \) for some integer \(b \). Squaring both sides, we get \(a^2 = 4b^2 = 2(2b^2) \). So \(a^2 \) is, by definition, is even.

Since \(a \) was arbitrary, we have shown that the square of every even number is even. ■

\[\forall x \ (\text{Even}(x) \rightarrow \text{Even}(x^2)) \]
Prove “The sum of two odd numbers is even.”

Formally, prove \(\forall x \forall y ((\text{Odd}(x) \land \text{Odd}(y)) \rightarrow \text{Even}(x+y)) \)
Prove “The sum of two odd numbers is even.”

Formally, prove \(\forall x \forall y ((\text{Odd}(x) \land \text{Odd}(y)) \rightarrow \text{Even}(x+y)) \)

Let \(x \) and \(y \) be arbitrary integers.

1. Let \(x \) be an arbitrary integer
2. Let \(y \) be an arbitrary integer

Since \(x \) and \(y \) were arbitrary, the sum of any odd integers is even.

3. \((\text{Odd}(x) \land \text{Odd}(y))\rightarrow \text{Even}(x+y)\)
4. \(\forall y ((\text{Odd}(x) \land \text{Odd}(y)) \rightarrow \text{Even}(x+y)) \)
5. \(\forall x \forall y ((\text{Odd}(x) \land \text{Odd}(y)) \rightarrow \text{Even}(x+y)) \)
Prove “The sum of two odd numbers is even.”

Formally, prove \(\forall x \forall y ((\text{Odd}(x) \land \text{Odd}(y)) \rightarrow \text{Even}(x+y)) \)

Let \(x \) and \(y \) be arbitrary integers.

Suppose that both are odd.

so \(x+y \) is even.

Since \(x \) and \(y \) were arbitrary, the sum of any odd integers is even.
Prove “The sum of two odd numbers is even.”

Formally, prove $\forall x \forall y ((\text{Odd}(x) \land \text{Odd}(y)) \rightarrow \text{Even}(x+y))$

Let x and y be arbitrary integers.

Suppose that both are odd.

so $x+y$ is even.

Since x and y were arbitrary, the sum of any odd integers is even.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

3.1 $\text{Odd}(x) \land \text{Odd}(y)$ Assumption
3.2 $\text{Odd}(x)$ Elim \land: 2.1
3.3 $\text{Odd}(y)$ Elim \land: 2.1

3.9 $\text{Even}(x+y)$

3. $(\text{Odd}(x) \land \text{Odd}(y)) \rightarrow \text{Even}(x+y)$ DPR
4. $\forall y ((\text{Odd}(x) \land \text{Odd}(y)) \rightarrow \text{Even}(x+y))$ Intro \forall
5. $\forall x \forall y ((\text{Odd}(x) \land \text{Odd}(y)) \rightarrow \text{Even}(x+y))$ Intro \forall
Prove “The sum of two odd numbers is even.”

Let x and y be arbitrary integers.

1. Let x be an arbitrary integer
2. Let y be an arbitrary integer

Suppose that both are odd.

3.1 Odd(x) ∧ Odd(y) Assumption
3.2 Odd(x) Elim ∧: 2.1
3.3 Odd(y) Elim ∧: 2.1

Then, we have x = 2a+1 for some integer a and y = 2b+1 for some integer b.

3.4 ∃z (x = 2z+1) Def of Odd: 2.2
3.5 x = 2a+1 Elim ∃: 2.4
3.6 ∃z (y = 2z+1) Def of Odd: 2.3
3.7 y = 2b+1 Elim ∃: 2.5

so x+y is, by definition, even.

3.9 ∃z (x+y = 2z) Intro ∃: 2.4
3.10 Even(x+y) Def of Even

Since x and y were arbitrary, the sum of any odd integers is even.

3. (Odd(x) ∧ Odd(y)) → Even(x+y) DPR
4. ∀y ((Odd(x) ∧ Odd(y)) → Even(x+y)) Intro ∀
5. ∀x ∀y ((Odd(x) ∧ Odd(y)) → Even(x+y)) Intro ∀
English Proof: Even and Odd

Prove “The sum of two odd numbers is even.”

Let \(x\) and \(y\) be arbitrary integers.

1. Let \(x\) be an arbitrary integer
2. Let \(y\) be an arbitrary integer

Suppose that both are odd.

3.1 Odd(x) \& Odd(y) Assumption
3.2 Odd(x) Elim \&: 2.1
3.3 Odd(y) Elim \&: 2.1

Then, we have \(x = 2a + 1\) for some integer \(a\) and \(y = 2b + 1\) for some integer \(b\).

3.4 \(\exists z\ (x = 2z + 1)\) Def of Odd: 2.2
3.5 \(x = 2a + 1\) Elim \(\exists\): 2.4
3.6 \(\exists z\ (y = 2z + 1)\) Def of Odd: 2.3
3.7 \(y = 2b + 1\) Elim \(\exists\): 2.5

Their sum is \(x + y = \ldots = 2(a+b+1)\)

3.8 \(x + y = 2(a+b+1)\) Algebra

so \(x + y\) is, by definition, even.

3.9 \(\exists z\ (x + y = 2z)\) Intro \(\exists\): 2.4
3.10 Even(x+y) Def of Even

Since \(x\) and \(y\) were arbitrary, the sum of any odd integers is even.

4. \(\forall y ((\text{Odd}(x) \& \text{Odd}(y)) \rightarrow \text{Even}(x+y))\) Intro \(\forall\)
5. \(\forall x \forall y ((\text{Odd}(x) \& \text{Odd}(y)) \rightarrow \text{Even}(x+y))\) Intro \(\forall\)
Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary integers.

Suppose that both are odd. Then, we have $x = 2a+1$ for some integer a and $y = 2b+1$ for some integer b. Their sum is $x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1)$, so $x+y$ is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even. ■
Prove “The sum of two odd numbers is even.”

Proof: Let x and y be arbitrary **odd** integers. Then, x = 2a+1 for some integer a and y = 2b+1 for some integer b. Their sum is x+y = (2a+1) + (2b+1) = 2a+2b+2 = 2(a+b+1), so x+y is, by definition, even.

Since x and y were arbitrary, the sum of any two odd integers is even.

∀x ∀y ((Odd(x) ∧ Odd(y)) → Even(x+y))