CSE 311: Foundations of Computing

Lecture 7: Propositional & Predicate Logic Proofs

Show that **r** follows from **p**, **p** \rightarrow **q**, and **q** \rightarrow **r**

1.	p	Given
2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
3.	$q \rightarrow r$	Given
4.	\boldsymbol{q}	MP: 1, 2
5.	r	MP: 3, 4

Modus Ponens
$$A : A \rightarrow B$$

 $\therefore B$

Last class: Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

Modus Ponens
$$A ; A \rightarrow B$$

 $\therefore B$

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Show that **r** follows from **p**, **p** \rightarrow **q** and (**p** \land **q**) \rightarrow **r**

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \rightarrow B}{\therefore B}$$

 $\frac{A \land B}{\therefore A, B}$

Show that **r** follows from **p**, **p** \rightarrow **q** and (**p** \land **q**) \rightarrow **r**

1. p 2. $p \rightarrow q$	Given Given	$\frac{A ; A \longrightarrow B}{\therefore B}$
3. $(p \land q) \rightarrow r$	Given	<u>A∧B</u> ∴A, B

			<u>A;B</u>
9.	r	??	$\therefore A \land B$

Show that **r** follows from $p, p \rightarrow q$, and $(p \land q) \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

1.	p	Given
2.	p ightarrow q	Given
3.	<i>q</i>	MP: 1, 2
4.	$\boldsymbol{p} \wedge \boldsymbol{q}$	Intro \: 1, 3
5.	$(\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow \boldsymbol{r}$	Given
6.	r	MP: 4, 5

$$\begin{array}{c} p \ ; \ p \rightarrow q \\ \hline p \ ; \ q \\ \hline p \wedge q \ ; \\ \hline p \wedge q \ ; \\ r \end{array} \begin{array}{c} 0. \ r \\ 0. \ r \\ 0. \ r \end{array}$$

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

First: Write down givens and goal

Idea: Work backwards!

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

20. ¬*r*

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove *q*...
 - Notice that at this point, if we prove *q*, we've proven ¬*r*...

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

1.	$p \wedge s$	Given
2.	$oldsymbol{q} ightarrow eg r$	Given
3.	$\neg s \lor q$	Given
17.	S	1. $p \land s$ Given 2. $q \rightarrow \tau$ Given 3. $\neg s \lor q$ Given 17. s 18. $\neg s$ Double Negation: 17
18.	$\neg \neg S$	Double Negation: 17
19.	q	∨ Elim: 3, 18
20.	$\neg r$	MP: 2, 19

1.	$p \wedge s$	Given	No holes left! We just
2.	q ightarrow eg r	Given	need to clean up a bit.
3.	$\neg s \lor q$	Given	
17.	<i>S</i>	∧ Elim: 1	
18.	רר <i>S</i>	Double Negation:	17
19.	<i>q</i>	∨ Elim: 3, 18	
20.	¬ <i>r</i>	MP: 2, 19	

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given
4.	S	∧ Elim: 1
5.	$\neg \neg S$	Double Negation: 4
6.	q	∨ Elim: 3, 5
7.	$\neg r$	MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g.
$$(p \rightarrow r) \lor q \equiv (\neg p \lor r) \lor q$$

 Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given
2. $(p \lor q) \Rightarrow r$ intro \lor from 1.
Does not follow! e.g. p=F, q=T, r=F

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

Given that A is true, we see that B is also true.

A®B

Rather than comparing A and B as columns, zooming in on just the rows where B is true:

р	q	Α	В	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

 $(A \rightarrow B) \equiv T$

To Prove An Implication: $A \rightarrow B$

$$A \Longrightarrow B$$

 $\therefore A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" A ⇒ B for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1.	<i>q</i>	Given
2.	$(p \wedge q) \rightarrow r$	Given
	3.1. <i>p</i>	Assumption
	3.2. <i>p</i> ∧ <i>q</i>	Intro ∧: 1, 3.1
	3.3. <i>r</i>	MP: 2, 3.2
3.	p ightarrow r	Direct Proof

Example

Where do we start? We have no givens...

Example

Prove: $(p \land q) \rightarrow (p \lor q)$

Assumption

?? Direct Proof Prove: $(\mathbf{p} \land \mathbf{q}) \rightarrow (\mathbf{p} \lor \mathbf{q})$

- 1.1. *p* ∧ *q*
- 1.2. *p*
- **1.3.** *p* ∨ *q*
- **1.** $(p \land q) \rightarrow (p \lor q)$

Assumption Elim A: 1.1 Intro V: 1.2 Direct Proof

- Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Example

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

- 1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption 1.2. $p \rightarrow q$ \land Elim: 1.1
- **1.3.** $q \rightarrow r$ \wedge Elim: **1.1**

1.?
$$p \rightarrow r$$

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

- **1.1.** $(p \rightarrow q) \land (q \rightarrow r)$ Assumption
- **1.2.** $p \rightarrow q$ \wedge Elim: **1.1**
- **1.3.** $q \rightarrow r$ \wedge Elim: **1.1**
 - 1.4.1. *p* Assumption

1.4.? *r*

1.4. $p \rightarrow r$ Direct Proof

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove:	$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$
1.1	$(p \rightarrow q) \land (q \rightarrow r)$ Assumption

- **1.2.** $p \rightarrow q$ \wedge Elim: **1.1**
- **1.3.** $q \rightarrow r$ \wedge Elim: **1.1**
 - 1.4.1. *p* Assumption
 - 1.4.2. *q* MP: 1.2, 1.4.1
 - 1.4.3. *r* MP: 1.3, 1.4.2
- **1.4.** $p \rightarrow r$ Direct Proof

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Inference Rules for Quantifiers: First look

$$\begin{array}{c|c} Elim \exists & \exists x P(x) \\ \therefore P(c) \text{ for some special** c} \end{array} \quad Intro \forall \\ \end{array}$$

** By special, we mean that c is a name for a value where P(c) is true.We can't use anything else about that value, so c has to be a NEW name!

My First Predicate Logic Proof

Prove $\forall x P(x) \rightarrow \exists x P(x)$

5. $\forall x P(x) \rightarrow \exists x P(x)$

The main connective is implication so Direct Proof seems good

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5.
$$\exists x P(x)$$
 ?
1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5.
$$\exists x P(x)$$

That requires P(c) for some c.

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1.1. $\forall x P(x)$ Assumption **1.2.** *P*(**5**)

Elim ∀: **1.1**

We need an \exists we don't have so "intro \exists " rule makes sense

That requires P(c) Intro ∃: (? **1.5.** $\exists x P(x)$ for some c. **1.** $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

1.1. $\forall x P(x)$ Assumption1.2. P(5)Elim $\forall: 1.1$

1.5. $\exists x P(x)$ Intro \exists : **1.2 1.** $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

Assumptior Elim ∀: 1.1 Intro ∃: 1.2 Direct Proof

Working forwards as well as backwards:

In applying "Intro \exists " rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Can use

Predicate logic inference rules

whole formulas only

- Predicate logic equivalences (De Morgan's) even on subformulas
- Propositional logic inference rules whole formulas only
- Propositional logic equivalences even on subformulas

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example:

 Given the basic properties of arithmetic on integers, define:

Predicate Definitions Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

A Not so Odd Example

Domain of Discourse Integers Predicate DefinitionsEven(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x Even(x)$

1.	2 = 2 · 1	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Definition of Even: 2
4.	∃x Even(x)	Intro ∃: 3

A Prime Example

Domain of Discourse Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$ Prime(x) := "x > 1 and x≠a \cdot b for all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

A Prime Example

Domain of Discourse

Integers

Predicate Definitions Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$ Prime(x) := "x > 1 and x≠a \cdot b for all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1.	$2 = 2 \cdot 1$	Algebra
2.	∃y (2 = 2 ·y)	Intro ∃: 1
3.	Even(2)	Def of Even: 3
4.	Prime(2)*	Property of integers
5.	Even(2) ^ Prime(2)	Intro ∧: 2, 4
6.	$\exists x (Even(x) \land Prime(x))$	Intro ∃: 5

* Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

3. $\forall x (Even(x) \rightarrow Even(x^2))$

?
Intro ∀: 1,2

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro \forall : 1,2

Even and Odd	Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$ Domain: Integers			
$\underbrace{\text{Intro } \forall}^{\text{Let } a \ be \ arbitrary^{*"}P(a)} \underbrace{\text{Elim } \exists}_{\therefore \forall x \ P(x)} \land P$	∃x P(x) P(c) for some <i>special</i> ** c			
Prove: "The square of any even number is even."				
Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$				
1. Let a be an arbitrary integer				
2.1 Even(a)	Assumption			
2.2 ∃y (a = 2y)	Definition of Even			
2.3 a = 2b	Elim ∃: b			
2.5 $\exists y (a^2 = 2y)$ 2.6 $Even(a^2)$ 2. $Even(a) \rightarrow Even(a^2)$ 3. $\forall x (Even(x) \rightarrow Even(x^2))$	Intro \exists : Definition of Even Direct proof Intro \forall : 1,2 Need $a^2 = 2c$ for some c			

These rules need more caveats...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- **3.** $\exists y (y \ge a)$ Elim $\forall : 1$
- $4. \quad b \ge a \qquad \qquad \text{Elim } \exists: b$
- **5.** $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

These rules need more caveats...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

Can't get rid of a since another name in the same line, b, depends on it!

These rules need more caveats...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

- We often write proofs in English rather than as fully formal proofs
 - They are more natural to read
- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...

... and give clues for how to produce them.