CSE 311: Foundations of Computing

Lecture 7: Propositional & Predicate Logic Proofs

Two corrections on Homework 2

Task 2: Tas | F => 0

Task 4(4): Kefer + fash 3

not Task 1

Last class: My First Proof!

Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

$$\begin{array}{cccc}
1. & p & \text{Given} \\
2. & p \rightarrow q & \text{Given} \\
3. & q \rightarrow r & \text{Given} \\
4. & q & \text{MP: 1, 2} \\
5. & r & \text{MP: 3, 4}
\end{array}$$

Last class: Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

1.
$$p \rightarrow q$$
 Given

2.
$$\neg q$$
 Given

3.
$$\neg q \rightarrow \neg p$$
 Contrapositive: 1

4.
$$\neg p$$
 MP: 2, 3

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$
 $\therefore B$

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim ∧
$$A \land B$$

∴ A, B

Intro ∧ $A; B$
∴ A ∧ B

Elim ∨ $A \lor B; \neg A$
∴ B

Intro ∨ $A \lor B, B \lor A$

Modus Ponens $A; A \to B$
∴ B

Direct Proof $A \Rightarrow B$
∴ $A \to B$

Show that r follows from p, p \rightarrow q and (p \land q) \rightarrow r

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\underbrace{A ; A \rightarrow B}_{:: B}$$

$$A \wedge B$$
 $\therefore A, B$

Show that r follows from p, p \rightarrow q and $(p \land q) \rightarrow r$

 $n \rightarrow a$

3.
$$(p \land q) \rightarrow r$$

4. 9

Given

MP:1,2

$$A : A \rightarrow B$$

Show that r follows from $p, p \rightarrow q$, and $(p \land q) \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

Given

2.
$$p \rightarrow q$$

Given

MP: 1, 2

4.
$$p \wedge q$$

Intro ∧: 1, 3

5.
$$(p \land q) \rightarrow r$$

Given

MP: 4, 5

$$\begin{array}{c|c}
p, p \rightarrow q \\
\hline
p; q \\
\hline
 & \text{Intro} \land \\
\hline
p \land q; (p \land q) \rightarrow r \\
\hline
r
\end{array}$$
MP

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

Given $p \wedge s$

2. $q \rightarrow \neg r$ 3. $\neg s \lor q$ Given

Given

First: Write down givens and goal

$$\frac{19}{20}$$
. $\frac{9}{7}$

Idea: Work backwards!

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

20. ¬*r*

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove q...
 - Notice that at this point, if we prove q, we've proven $\neg r$...

- **19**. *q*
- **20.** ¬*r*

?

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

19. *q*

20. ¬*r*

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.
$$p \wedge s$$
 Given

2.
$$q \rightarrow \neg r$$
 Given

3.
$$\neg s \lor q$$
 Given

18.
$$\neg \neg s$$

19. *q*

20. ¬*r*

s doesn't show up in the givens but

s does and we can use equivalences

∨ Elim: 3, 18

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.
$$p \wedge s$$
 Given

2.
$$q \rightarrow \neg r$$
 Given

3.
$$\neg s \lor q$$
 Given

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

No holes left! We just

need to clean up a bit.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \lor q$ Given

17. *s* ∧ Elim: **1**

18. ¬¬*s* Double Negation: **17**

19. *q* ∨ Elim: 3, 18

20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- 4. **s** ∧ Elim: 1
- 5. ¬¬s Double Negation: 4
- 6. *q* ∨ Elim: 3, 5
- 7. $\neg r$ MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g.
$$(p \rightarrow r) \lor q \equiv (\neg p \lor r) \lor q$$

 Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given
2. $(p \lor q) \rightarrow r$ intro \lor from 1.

Does not follow! e.g. p=F, q=T, r=F

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim
$$\land$$
 $A \land B$
 $\therefore A, B$
 $A \lor B; \neg A$
 $\therefore B$

Intro \land $A; B$
 $A \lor B; \neg A$
 $\therefore A \lor B, B \lor A$

Modus Ponens

 $A; A \to B$
 $A \lor B; \neg A$
 $A \lor B; \neg A; A \to B$

Direct Proof

 $A \Rightarrow B$
 $A \Rightarrow B$
 $A \Rightarrow B$
 $A \Rightarrow B$

Not like other rules

Last class: New Perspective

Rather than comparing A and B as columns, zooming in on just the rows where A is true:

р	q	Α	В
Т	Т	Т	Т
Т	F	Т	Т
H	Т	F	
F	F	F	_

Given that A is true, we see that B is also true.

A ® B

Last class: New Perspective

Rather than comparing A and B as columns, zooming in on just the rows where B is true:

	р	q	Α	В	$A \rightarrow B$
\int	Τ	Т	Т	Т	Т
	Τ	F	Т	Т	Т
	F	T	F	Т	Т
	F	F	F	F	T

When we zoom out, what have we proven?

$$(A \rightarrow B) \equiv T$$

To Prove An Implication: $A \rightarrow B$

 $A \Rightarrow B$ $\therefore A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

```
1. q Given

2. (p \land q) \rightarrow r Given

3.1. p Assumption

3.2. p \land q Intro \land: 1, 3.1

3.3. r MP: 2, 3.2

3. p \rightarrow r Direct Proof
```

Prove: $(p \land q) \rightarrow (p \lor q)$

There MUST be an application of the Direct Proof Rule (or an equivalence) to prove this implication.

As, my

Where do we start? We have no givens...

Into V: 1.2 ((prg) -> (prg) Dored Proof

Prove:
$$(p \land q) \rightarrow (p \lor q)$$

1.1.
$$p \wedge q$$

Assumption

1.9.
$$p \vee q$$

1.
$$(p \land q) \rightarrow (p \lor q)$$

Direct Proof

Prove: $(p \land q) \rightarrow (p \lor q)$

1.1.
$$p \wedge q$$

1.2. *p*

1.3. $p \vee q$

 $1. \quad (p \land q) \rightarrow (p \lor q)$

Assumption

Elim ∧: 1.1

Intro ∨: **1.2**

Direct Proof

One General Proof Strategy

Somt wife pa)

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Prove: $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption

1.?
$$p \rightarrow r$$
 And Put

1.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 Direct Proof

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption
1.2. $p \rightarrow q$ \land Elim: 1.1
1.3. $q \rightarrow r$ \land Elim: 1.1

1.?
$$p \rightarrow r$$
 muf Poel

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.2. $p \rightarrow q$ \land Elim: 1.1

1.3. $q \rightarrow r$ \land Elim: 1.1

1.4.1. p Assumption

1.4.2. q MP: 1.2, 1.4.1 \triangleright

1.4.3. r MP: 1.3, 1.4.2

1.4. $p \rightarrow r$ Direct Proof

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Inference Rules for Quantifiers: First look

P(c) for some c
$$\exists x P(x)$$
 $\therefore \exists x P(x)$

Elim $\forall x P(x)$
 $\therefore P(a) \text{ (for any a)}$

$$∃x P(x)$$
∴ P(c) for some special** c

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Domain of Discourse
Integers

Prove
$$(\forall x P(x)) \rightarrow (\exists x P(x))$$

P(c) for some c
∴
$$\exists x P(x)$$

Elim \forall
∴ P(a) for any a

5.
$$\forall x P(x) \rightarrow \exists x P(x)$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

P(c) for some c
$$\therefore \exists x P(x)$$

$$\forall x P(x)$$

$$P(x) \text{ for any } x = x$$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5.
$$\exists x P(x)$$

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

Domain of Discourse
Integers

Prove $\forall x P(x) \rightarrow \exists x P(x)$

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c|c}
 & \forall x \ P(x) \\
 & \therefore \ P(a) \ \text{for any } a
\end{array}$$

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5. $\exists x P(x)$

Intro ∃: ?

That requires P(c) for some c.

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

Domain of Discourse
Integers

Prove $\forall x P(x) \rightarrow \exists x P(x)$

 $\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

1.1. $\forall x P(x)$

Assumption

1.4. P(5)1.5. $\exists x P(x)$

1. $\forall x P(x) \rightarrow \exists x P(x)$

? Elim 1: 187
Intro 3: 1.4

Direct Proof

My First Predicate Logic Proof

Domain of Discourse
Integers

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

1.1. $\forall x P(x)$

Assumption

1.4. P(5)1.5. $\exists x P(x)$

Elim ∀: **1.1** Intro ∃: **1.4**

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

My First Predicate Logic Proof

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

$$\begin{array}{c}
\forall x \ P(x) \\
\therefore \ P(a) \ \text{for any } a
\end{array}$$

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1.1. $\forall x P(x)$

1.2. P(5)

1. $\forall x P(x) \rightarrow \exists x P(x)$

1.3. $\exists x P(x)$

 $\bot.5. \quad \exists x P(x)$

Assumption

Elim ∀: **1.1**

Intro ∃: 1.2

Direct Proof

Working forwards as well as backwards:

In applying "Intro \exists " rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's)
 even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalenceseven on subformulas

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example: Domain of Discourse Integers
- Given the basic properties of arithmetic on integers,
 define:

 Predicate Definitions

Even(x) :=
$$\exists y (x = 2 \cdot y)$$

Odd(x) := $\exists y (x = 2 \cdot y + 1)$

A Not so Odd Example

Domain of Discourse

Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$ Odd(x) := $\exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; Even(x)$

A Not so Odd Example

Domain of Discourse

Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

 $Odd(x) := \exists y (x = 2 \cdot y + 1)$

Prove "There is an even number"

Formally: prove $\exists x \; Even(x)$

1.
$$2 = 2 \cdot 1$$
 Algebra

2.
$$\exists y (2 = 2 \cdot y)$$
 Intro $\exists : 1$

4.
$$\exists x \; Even(x)$$
 Intro $\exists : 3$

A Prime Example

Domain of Discourse

Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

Odd(x) := $\exists y (x = 2 \cdot y + 1)$ Prime(x) := "x > 1 and x \neq a \cdot b for

all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

A Prime Example

Domain of Discourse

Integers

Predicate Definitions

Even(x) := $\exists y (x = 2 \cdot y)$

 $Odd(x) := \exists y (x = 2 \cdot y + 1)$

Prime(x) := "x > 1 and $x \ne a \cdot b$ for

all integers a, b with 1<a<x"

Prove "There is an even prime number"

Formally: prove $\exists x (Even(x) \land Prime(x))$

1. $2 = 2 \cdot 1$ Algebra

2. $\exists y (2 = 2 \cdot y)$ Intro $\exists : 1$

3. Even(2) Def of Even: 3

4. Prime(2)* Property of integers

5. Even(2) \land Prime(2) Intro \land : 2, 4

6. $\exists x (Even(x) \land Prime(x))$ Intro $\exists : 5$

^{*} Later we will further break down "Prime" using quantifiers to prove statements like this

Inference Rules for Quantifiers: First look

P(c) for some c
$$\therefore \exists x P(x)$$

Elim
$$\forall$$
 $\forall x P(x)$

$$\therefore P(a) \text{ (for any a)}$$

$$∃x P(x)$$
∴ P(c) for some special** c

Let a be arbitrary*"...P(a)

∴ $\forall x P(x)$

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

* in the domain of P

Even(x) := $\exists y (x=2y)$ Odd(x) := $\exists y (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

3. $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

Even(x) := $\exists y \ (x=2y)$

Odd(x) := $\exists y (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

- 2. Even(a) \rightarrow Even(a²)
- 3. $\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2\text{))}$

Intro ∀: 1,2

Even(x) := $\exists y (x=2y)$

 $Odd(x) := \exists y (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.1 Even(a)

Assumption

?

2. Even(a) \rightarrow Even(a²)

Direct proof

3. $\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2\text{))}$

Intro \forall : 1,2

Even(x) := $\exists y (x=2y)$

 $Odd(x) := \exists y (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x (Even(x) \rightarrow Even(x^2))$

1. Let a be an arbitrary integer

2.1 Even(a)

Assumption

2.2 $\exists y (a = 2y)$ Definition of Even

2.5
$$\exists y (a^2 = 2y)$$

2.6 Even(a²)

Definition of Even

2. Even(a) \rightarrow Even(a²)

Direct Proof

3. $\forall x (Even(x) \rightarrow Even(x^2))$ Intro $\forall : 1,2$

Even(x) := $\exists y (x=2y)$

Odd(x) := $\exists y (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.1 Even(a) Assumption

2.2 $\exists y (a = 2y)$ Definition of Even

2.5 $\exists y (a^2 = 2y)$

Intro∃: 🕐

Need $a^2 = 2c$ for some c

2.6 Even(a²)

Definition of Even

2. Even(a) \rightarrow Even(a²)

Direct proof

3. $\forall x (Even(x) \rightarrow Even(x^2))$

Intro ∀: 1,2

Even(x) := $\exists y \ (x=2y)$ Odd(x) := $\exists y \ (x=2y+1)$

Domain: Integers

Prove: "The square of any even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

2.2
$$\exists y (a = 2y)$$
 Definition of Even

2.3
$$a = 2b$$
 Elim $\exists : b$

2.5
$$\exists y (a^2 = 2y)$$

Direct proof

2. Even(a)
$$\rightarrow$$
Even(a²)

3.
$$\forall x \text{ (Even(x)} \rightarrow \text{Even(x}^2\text{))}$$
 Intro $\forall : 1,2$

Intro
$$\exists$$
:

Need $a^2 = 2c$ for some c

Even(x) := $\exists y \ (x=2y)$ Odd(x) := $\exists y \ (x=2y+1)$ Domain: Integers

Used $a^2 = 2c$ for $c=2b^2$

"Let a be arbitrary*"...P(a) $\therefore \forall x P(x)$ $Elim \exists \exists x P(x)$ $\therefore P(c) \text{ for some } special** c$

Prove: "The square of any even number is even."

Formal proof of: $\forall x \text{ (Even}(x) \rightarrow \text{Even}(x^2))$

1. Let a be an arbitrary integer

- 2.1 Even(a) Assumption
- 2.2 $\exists y (a = 2y)$ Definition of Even
- **2.3** a = 2b Elim $\exists : b$
- **2.4** $a^2 = 4b^2 = 2(2b^2)$ Algebra
- **2.5** $\exists y (a^2 = 2y)$ Intro \exists
- **2.6** Even(a²) Definition of Even
- 2. Even(a) \rightarrow Even(a²) Direct Proof
- 3. $\forall x (Even(x) \rightarrow Even(x^2))$ Intro $\forall : 1,2$

These rules need more caveats...

There are extra conditions on using these rules:

"Let a be arbitrary*"...P(a)

$$\therefore$$
 $\forall x \ P(x)$

* in the domain of P

Elim $\exists x \ P(x)$
 $\therefore P(c) \ \text{for some } special** c$

** c has to be a NEW name.

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim $\exists : b$
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

These rules need more caveats...

There are extra conditions on using these rules:

"Let a be arbitrary*"...P(a)

$$\therefore$$
 $\forall x P(x)$

* in the domain of P

Elim $\exists x P(x)$
 $\therefore P(c)$ for some special** c

** c has to be a NEW name.

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim $\exists : b$
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

These rules need more caveats...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y (y \ge x)$ is True but $\exists y \forall x (y \ge x)$ is False

BAD "PROOF"

- **1.** $\forall x \exists y (y \ge x)$ Given
- 2. Let a be an arbitrary integer
- 3. $\exists y (y \ge a)$ Elim $\forall : 1$
- 4. $b \ge a$ Elim \exists : b special depends on a
- 5. $\forall x (b \ge x)$ Intro $\forall : 2,4$
- 6. $\exists y \forall x (y \ge x)$ Intro $\exists : 5$

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

P(c) for some c
$$\therefore \exists x P(x)$$

$$\begin{array}{c|c}
\hline
 & \forall x P(x) \\
\hline
 & P(a) \text{ for any } a
\end{array}$$

$$∃x P(x)$$
∴ P(c) for some special** c

 $\frac{\text{Intro } \forall \text{ Let a be arbitrary}^* ... P(a)}{\therefore \qquad \forall x P(x)}$

** c is a NEW name. List all dependencies for c. * in the domain of P. No other name in P depends on a

English Proofs

- We often write proofs in English rather than as fully formal proofs
 - They are more natural to read

- English proofs follow the structure of the corresponding formal proofs
 - Formal proof methods help to understand how proofs really work in English...
 - ... and give clues for how to produce them.