CSE 311: Foundations of Computing
Lecture 7: Propositional \& Predicate Logic Proofs

NOW, LETS ASSUME THE CORRECT ANSWER WILL EVENTUALLY BE WRITE ON THIS BOARD AT THE
COORDINATES (x, y). IF WE-

Two correction on Homework 2

$$
\begin{aligned}
& \text { Task 2: } T \rightarrow 1, f \rightarrow 0 \\
& \text { Task } 4(b): \text { Refer }+ \text { ta sh } 3 \\
& \text { not Task } 1
\end{aligned}
$$

Last class: My First Proof!

Show that r follows from $p, p \rightarrow q$, and $q \rightarrow r$

Last class: Proofs can use equivalences too

Show that \neg p follows from $p \rightarrow q$ and $\neg q$

1.	$p \rightarrow q$	Given Given
2. $\neg q$ $\neg q \rightarrow \neg p$	Contrapositive: 1	
3.	$\neg p$	MP: 2,3

Modus Ponens $\frac{A ; A \rightarrow B}{\therefore B}$

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

$\therefore \mathrm{B}$

Proofs

Show that r follows from $p, p \rightarrow q$ and $(p \wedge q) \rightarrow r$ How To Start:

We have givens, find the ones that go together and use them. Now, treat new
 things as givens, and repeat.

$$
\frac{\mathrm{A} \wedge \mathrm{~B}}{\therefore \mathrm{~A}, \mathrm{~B}}
$$

$$
\frac{A ; B}{\therefore \mathrm{~A} \wedge B}
$$

Proofs

Show that r follows from $p, p \rightarrow q$ and $(p \wedge q) \rightarrow r$

$$
\begin{array}{llc}
\text { (1. } p & \text { Given } & \underline{A ; A \rightarrow B} \\
\text { 2. } p \rightarrow q & \text { Given } & \therefore \mathrm{B} \\
\text { 3. }(p \wedge q) \rightarrow r & \text { Given } \\
\text { 4. } q & \text { arp :1,2 } & \frac{\mathrm{A} \wedge \mathrm{~B}}{\therefore \mathrm{~A}, \mathrm{~B}} \\
\text { 5. pdq } & \text { Intro } \wedge: 1,4 & \\
\begin{array}{lll}
\text { 9. } r & \text { 2? } M P: 5,3 & \therefore \mathrm{~A} \wedge \mathrm{~B}
\end{array}
\end{array}
$$

Proofs

Show that r follows from $p, p \rightarrow q$, and $(p \wedge q) \rightarrow r$

1. p

Two visuals of the same proof. 2. $p \rightarrow q$
We will use the top one, but if 3. q the bottom one helps you think about it, that's great!
4. $p \wedge q$
5. $(p \wedge q) \rightarrow r$ Given

Given
Given
MP: 1, 2
Intro \wedge : 1, 3

MP: 4, 5

Proofs

Prove that $\neg r$ follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s \quad$ Given
2. $q \rightarrow \neg r$ Given
3. $\neg \boldsymbol{s} \vee q$ Given

First: Write down givens
and goal

$M P: 2,19$
Idea: Work backwards!

Proofs

Prove that $\neg r$ follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s \quad$ Given
2. $\quad q \rightarrow \neg r \quad$ Given
3. $\neg \boldsymbol{s} \vee q \quad$ Given

Idea: Work backwards!
We want to eventually get $\neg r$. How?

- We can use $\boldsymbol{q} \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim \rightarrow " which is MP.

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s \quad$ Given
2. $\quad q \rightarrow \neg r \quad$ Given
3. $\neg s \bigvee \underline{q} \quad$ Given

Idea: Work backwards!
We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove q...
- Notice that at this point, if we prove q, we've proven $\neg r$...

19. q
20. $\neg r$

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1.	$p \wedge s$	Given
2.	$q \rightarrow \neg r$	Given

$$
\text { 3. } \neg s \vee q \quad \text { Given }
$$

$$
18.725
$$

$$
\text { 19. } q
$$

$$
\text { 20. } \neg r
$$

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1.	$p \wedge s$	Given
2.	$q \rightarrow \neg r$	Given
3.	$\neg s \vee q$	Given

$\neg \neg S$ doesn't show up in the givens but
18. $\neg \neg S$
19. q
20. $\neg r$

s does and we can use equivalences
V Elim: 3,18
MP: 2, 19

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s$	Given	
2.	$q \rightarrow \neg r$	Given
3.	$\neg s \vee q$	Given

17. s
18. $\neg \neg S$
19. q
20. $\neg r$

* Elin $\Lambda: 1$

Double Negation: 17
V Elim: 3, 18
MP: 2, 19

Proofs

Prove that \neg follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1.	$p \wedge s$	Given	No holes left! We just need to clean up a bit.
2.	$q \rightarrow \neg r$	Given	
3.	$\neg s \vee q$	Given	
17.	s	\wedge Elim: 1	
18.	$\neg \neg s$	Double Negation: 17	
19.	q	V Elim: 3,18	
20.	$\neg r$	MP: 2, 19	

Proofs

Prove that \neg r follows from $p \wedge s, q \rightarrow \neg r$, and $\neg s \vee q$.

1. $p \wedge s \quad$ Given
2. $\quad q \rightarrow \neg r$ Given
3. $\neg s \vee q$ Given
4. $s \wedge$ Elim: 1
$\begin{array}{lll}\text { 5. } & \neg \neg S & \text { Double Nega } \\ \text { 6. } & q & \text { V Elim: } 3,5\end{array}$
5. $\neg r \quad$ MP: 2, 6

Important: Applications of Inference Rules

- You can use equivalences to make substitutions of any sub-formula.

$$
\text { e.g. }(p \rightarrow r) \vee \boldsymbol{q} \equiv(\neg p \vee r) \vee \boldsymbol{q}
$$

- Inference rules only can be applied to whole formulas (not correct otherwise).

$$
\begin{array}{ll}
\text { e.g. 1. } p \rightarrow r & \text { given } \\
\text { 2. }(p \vee q) & \text { intro from 1. }
\end{array}
$$

Does not follow! e.g • $p=F, q=T, r=F$

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

Last class: New Perspective

Rather than comparing A and B as columns,
zooming in on just the rows where A is true:

\boldsymbol{p}	\boldsymbol{q}	\mathbf{A}	\mathbf{B}
T	T	T	T
T	F	T	T
F	T	F	
F	F	F	

Given that A is true, we see that B is also true.
A ®B

Last class: New Perspective

Rather than comparing A and B as columns, zooming in on just the rows where B is true:

\boldsymbol{p}	\boldsymbol{q}	\mathbf{A}	\mathbf{B}	$\mathbf{A} \rightarrow \mathbf{B}$
T	T	T	T	T
T	F	T	T	T
F	T	F	T	T
F	F	F	F	T

When we zoom out, what have we proven?

$$
(A \rightarrow B) \equiv T
$$

To Prove An Implication: $A \rightarrow B$

- We use the direct proof rule

$$
\frac{\mathrm{A} \Rightarrow \mathrm{~B}}{\therefore \mathrm{~A} \rightarrow \mathrm{~B}}
$$

- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \wedge q) \rightarrow r$

Given
Given

Assumption © If we know p is true...

$\begin{array}{c}\text { This is a } \\ \text { proof } \\ \text { of } p \rightarrow r\end{array}$	$\begin{array}{ll}\text { 3.1. } & p \\ \text { 3.2. } & p \wedge q\end{array}$	
3.		

Into $1: 3: 1$, Then we've shown
?? MP: $2,3,2$
[3. $p \rightarrow r$ Direct Proof

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \wedge q) \rightarrow r$

1. q
2. $(p \wedge q) \rightarrow r$
3.1. p Assumption
3.2. $p \wedge q$ Intro $\wedge: 1,3.1$
3.3. r MP: 2, 3.2
3. $p \rightarrow r$

Direct Proof

Example
Prove: $(p \wedge q) \Theta(p \vee q)$

Where do we start? We have no givens...

$$
\text { isp pdq Into } V: 1.2
$$

1. $(p \wedge q) \rightarrow(p \vee q)$ Dosed Proof

Example
Prove: $(p \wedge q) \rightarrow(p \vee q)$
1.1. $p \wedge q$

Assumption

$$
\begin{array}{ll}
\text { 1.9. } p \vee q & \text { ?? } \\
\text { 1. }(p \wedge q) \rightarrow(p \vee q) & \text { Direct Proof }
\end{array}
$$

Example
Prove: $(p \wedge q) \rightarrow(p \vee q)$

> 1.1. $p \wedge q$
> 1.2. p
> 1.3. $p \vee q$
> 1. $\quad(p \wedge q) \rightarrow(p \vee q)$

Assumption
Elim \wedge : 1.1
Intro V: 1.2
Direct Proof

One General Proof Strategy

1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
3. Write the proof beginning with what you figured out for 2 followed by 1.

Example
Duat Punct

Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$

Example
Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$
1.1. $\frac{(p \rightarrow q) \wedge(q \rightarrow r)}{\rho}$ Assumption

1.? $\quad p \rightarrow r \quad$ Preut Puct

1. $((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r) \quad$ Direct Proof

Example

Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$
1.1. $(p \rightarrow q) \wedge(q \rightarrow r)$ Assumption
1.2. $p \rightarrow q \quad \wedge$ Elim: 1.1
1.3. $q \rightarrow r \wedge$ Elim: 1.1

0
1.? $\quad p \rightarrow r$ Drat Thof

1. $((\boldsymbol{p} \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{q} \rightarrow \boldsymbol{r})) \rightarrow(\boldsymbol{p} \rightarrow \boldsymbol{r})$ Direct Proof

Example

Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$
1.1. $(p \rightarrow q) \wedge(q \rightarrow r)$ Assumption
1.2. $p \rightarrow q$
1.3. $\quad q \rightarrow r$
^ Elim: $1.1 \leftarrow$
\wedge Elim: $1.1 \leftarrow$
1.4.1. $p \quad$ Assumption
$\begin{array}{lll}1.4 .2 & q & ? M P 1.2 \\ 1.4 . ? & r & M P=(1.3,1.4 .2)\end{array}$
1.4. $p \rightarrow r$

Direct Proof

1. $((\boldsymbol{p} \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{q} \rightarrow \boldsymbol{r})) \rightarrow(\boldsymbol{p} \rightarrow \boldsymbol{r}) \quad$ Direct Proof

Example

Prove: $\quad((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$
1.1. $(p \rightarrow q) \wedge(q \rightarrow r)$ Assumption
1.2. $p \rightarrow q \quad \wedge$ Elim: 1.1
1.3. $q \rightarrow r \quad \wedge$ Elim: 1.1
1.4.1. p Assumption
1.4.2. $q \quad$ MP: 1.2, 1.4.1
1.4.3. $r \quad$ MP: 1.3, 1.4.2
1.4. $p \rightarrow r$

Direct Proof

1. $((\boldsymbol{p} \rightarrow \boldsymbol{q}) \wedge(\boldsymbol{q} \rightarrow \boldsymbol{r})) \rightarrow(\boldsymbol{p} \rightarrow \boldsymbol{r}) \quad$ Direct Proof

Inference Rules for Quantifiers: First look


```
** By special, we mean that c is a
name for a value where P(c) is true.
We can't use anything else about that
value, so c has to be a NEW name!
```


My First Predicate Logic Proof

$\operatorname{Prove}(\forall x P(x)) \rightarrow(\exists x P(x))$

$$
\forall x P(x)
$$

5. $\forall x P(x) \rightarrow \exists x P(x)$

$$
\exists x P(x)
$$

Intro $\frac{\mathrm{P}(\mathrm{c}) \text { for some } \mathrm{c}}{\therefore \quad \exists \mathrm{xP}(\mathrm{x})}$
Elia $\forall \frac{\forall \mathrm{x} \mathrm{P}(\mathrm{x})}{\therefore \mathrm{P}(\mathrm{a}) \text { for any a }}$

The main connective is implicationso Direct Proofseems good

My First Predicate Logic Proof

Prove $\forall x P(x)) \rightarrow \exists x P(x)$

We need an \exists we don't have so "intro \exists " rule makes sense
1.5. $\exists x P(x)$

1. $\forall x P(x) \rightarrow \exists x P(x) \quad$ Direct Proof

My First Predicate Logic Proof

Prove $\forall x \mathrm{P}(\mathrm{x}) \rightarrow \exists \mathrm{x} \mathrm{P}(\mathrm{x})$

1.1. $\forall x P(x) \quad$ Assumption

We need an \exists we don't have
so "intro \exists " rule makes sense
1.5. $\exists \boldsymbol{x} P(x) \quad$ Intro $\exists: ? \quad \begin{aligned} & \text { That requires } \mathrm{P}(\mathrm{c}) \\ & \text { for some c. }\end{aligned}$

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

My First Predicate Logic Proof

Prove $\forall \mathrm{xP}(\mathrm{x}) \rightarrow \exists \mathrm{xP}(\mathrm{x})$

1. $\forall x P(x) \rightarrow \exists x P(x)$

Assumption
1.1. $\forall x P(x)$

(2) Elim $\Lambda=\left|\begin{array}{l}1 \\ 1\end{array}\right|$

Intro ヨ: 1.4
Direct Proof

Intro $\frac{\mathrm{P}(\mathrm{c}) \text { for some } \mathrm{c}}{\therefore \quad \exists \mathrm{xP}(\mathrm{x})}$

Direct Proof

My First Predicate Logic Proof

Prove $\forall \mathrm{xP}(\mathrm{x}) \rightarrow \exists \mathrm{xP}(\mathrm{x})$

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

Assumption

Elim $\forall: 1.1$
Intro $7: 1.4$
Direct Proof

My First Predicate Logic Proof
 (hames $\frac{P(c) \text { for some }}{i=1 \times P(x)}$

Prove $\forall x P(x) \rightarrow \exists x P(x)$

Assumption

Elim \forall : 1.1
Intro \exists : 1.2
Direct Proof

Working forwards as well as backwards:
In applying "Intro \exists " rule we didn't know what expression we might be able to prove $\mathrm{P}(\mathrm{c})$ for, so we worked forwards to figure out what might work.

Predicate Logic Proofs

- Can use
- Predicate logic inference rules
whole formulas only
- Predicate logic equivalences (De Morgan's)
even on subformulas
- Propositional logic inference rules
whole formulas only
- Propositional logic equivalences
even on subformulas

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example:

```
Domain of Discourse
```

Integers

- Given the basic properties of arithmetic on integers, define:

$$
\begin{array}{|l}
\hline \text { Predicate Definitions } \\
\hline \text { Even }(x):=\exists y(x=2 \cdot y) \\
\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1) \\
\hline
\end{array}
$$

A Not so Odd Example

Domain of Discourse
Integers

Predicate Definitions
$\operatorname{Even}(x):=\exists y(x=2 \cdot y)$
$\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1)$

Prove "There is an even number" Formally: prove $\exists x$ Even(x)

A Not so Odd Example

Domain of Discourse
Integers

Predicate Definitions
$\operatorname{Even}(x):=\exists y(x=2 \cdot y)$
$\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1)$

Prove "There is an even number"
Formally: prove $\exists x$ Even (x)
1.

Algebra
2. $\exists y(2=2 \cdot y) \quad$ Intro \exists : 1
3. Even(2)
4. $\exists x$ Even $(x) \quad$ Intro \exists : 3

A Prime Example

Domain of Discourse Integers

$$
\begin{array}{|l|}
\hline \text { Predicate Definitions } \\
\hline \begin{aligned}
& \operatorname{Even}(x):=\exists y(x=2 \cdot y) \\
& \operatorname{Odd}(x):=\exists y(x=2 \cdot y+1) \\
& \operatorname{Prime}(x):= \text { " } x>1 \text { and } x \neq a \cdot b \text { for } \\
& \text { all integers } a, b \text { with } 1<a<x \text { " }
\end{aligned} \\
\hline
\end{array}
$$

Prove "There is an even prime number" Formally: prove $\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x))$

A Prime Example

Domain of Discourse
Integers

$$
\begin{array}{|l|}
\hline \text { Predicate Definitions } \\
\hline \operatorname{Even}(x):=\exists y(x=2 \cdot y) \\
\operatorname{Odd}(x):=\exists y(x=2 \cdot y+1) \\
\operatorname{Prime}(x):= \\
\\
\\
\\
\\
\text { all integers } a, b \text { with } 1<a<x \text { " }
\end{array}
$$

Prove "There is an even prime number" Formally: prove $\exists x(E v e n(x) \wedge \operatorname{Prime}(x))$

1. $2=2 \cdot 1$
2. $\exists y(2=2 \cdot y)$
3. Even(2)
4. Prime(2)*
5. Even(2) \wedge Prime(2)
6. $\exists x(\operatorname{Even}(x) \wedge$ Prime $(x))$

Algebra Intro \exists : 1
Def of Even: 3
Property of integers
Intro ^: 2, 4
Intro \exists : 5

Inference Rules for Quantifiers: First look

[^0]
Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \text { Odd }(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$
3. $\forall \mathrm{x}\left(\operatorname{Even}(\mathrm{x}) \rightarrow \operatorname{Even}\left(\mathrm{x}^{2}\right)\right)$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \text { Odd }(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

| Intro $\forall \frac{\text { "Let a be arbitrary*"...P(a) }}{}$ | Elim \exists $\exists \mathrm{xP}(\mathrm{x})$
 $\therefore \quad \forall \mathrm{P}(\mathrm{x})$ $\therefore \mathrm{P}(\mathrm{c})$ for some special** c |
| :---: | :---: | :---: |

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2. $\operatorname{Even}(\mathrm{a}) \rightarrow \operatorname{Even}\left(\mathrm{a}^{2}\right)$
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \text { Odd }(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall "Let a be arbitrary*"...P(a)	Elim \exists	$\exists x P(x)$
$\therefore \quad \forall \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{c})$ for some special** ${ }^{*}$	

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)

Assumption
2.6 Even $\left(\mathrm{a}^{2}\right)$
2. $\operatorname{Even}(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow E v e n\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \text { Odd }(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

| Intro "Let a be arbitrary*"...P(a) | Elim \exists $\exists \mathrm{x} P(\mathrm{x})$
 $\therefore \quad \forall \mathrm{P}(\mathrm{x})$ $\therefore \mathrm{P}(\mathrm{c})$ for some special** c |
| :---: | :---: | :---: |

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right)$
2.6 Even(\mathbf{a}^{2})
2. $\operatorname{Even}(\mathbf{a}) \rightarrow \operatorname{Even}\left(\mathbf{a}^{2}\right)$
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

Definition of Even Direct Proof Intro \forall : 1,2

Even and Odd

Intro \forall "Let a be arbitrary*"...P(a)	Elim \exists	$\exists x P(x)$
$\therefore \quad \forall \mathrm{xP}(\mathrm{x})$	$\therefore \mathrm{P}(\mathrm{c})$ for some special** c	

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a)
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.5 \exists y\left(a^{2}=2 y\right) \quad$ Intro \exists : ?
Need $\mathrm{a}^{2}=2 \mathrm{c}$ for some c
2. Even $(\mathbf{a}) \rightarrow$ Even $\left(\mathbf{a}^{2}\right) \quad$ Direct proof
3. $\forall x\left(E v e n(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

$$
\begin{aligned}
& \operatorname{Even}(x):=\exists y \quad(x=2 y) \\
& \text { Odd }(x):=\exists y \quad(x=2 y+1) \\
& \text { Domain: Integers }
\end{aligned}
$$

Intro \forall	"Let a be arbitrary*"...P(a)	Elim \exists $\exists \mathrm{P} P(\mathrm{x})$ \therefore $\forall \mathrm{xP}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c		

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.3 a=2 b$
Elim \exists : b
$2.5 \exists y\left(a^{2}=2 y\right) \quad$ Intro \exists : ?
Need $\mathrm{a}^{2}=2 \mathrm{c}$
2.6 Even(\mathbf{a}^{2})
2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right) \quad$ Direct proof
3. $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

Even and Odd

Intro \forall "Let a be arbitrary*"...P(a)	Elim 3	$\exists x P(x)$
$\therefore \quad \forall x P(x)$	$\therefore \mathrm{P}(\mathrm{c})$ for some special** ${ }^{*}$	

Prove: "The square of any even number is even."
Formal proof of: $\forall x\left(\operatorname{Even}(x) \rightarrow \operatorname{Even}\left(x^{2}\right)\right)$

1. Let a be an arbitrary integer
2.1 Even(a) Assumption
$2.2 \exists y(a=2 y) \quad$ Definition of Even
$2.3 \mathrm{a}=2 \mathrm{~b} \quad$ Elim $\exists: \mathrm{b}$
$2.4 a^{2}=4 b^{2}=2\left(2 b^{2}\right) \quad$ Algebra
$2.5 \exists y\left(\mathbf{a}^{2}=2 \mathrm{y}\right)$
Intro \exists
Used $\mathrm{a}^{2}=2 \mathrm{c}$ for $\mathrm{c}=2 \mathrm{~b}^{2}$
2.6 Even $\left(a^{2}\right) \quad$ Definition of Even
2. Even $(\mathrm{a}) \rightarrow$ Even $\left(\mathrm{a}^{2}\right) \quad$ Direct Proof
3. $\forall x\left(E v e n(x) \rightarrow E v e n\left(x^{2}\right)\right) \quad$ Intro $\forall: 1,2$

These rules need more caveats...

There are extra conditions on using these rules:
$\frac{\text { Intro } \forall \text { "Let a be arbitrary*"...P(a) }}{\therefore \quad \forall x P(x)}$

* in the domain of P

| $\operatorname{Elim} \exists \mathrm{P}(\mathrm{c})$ for some special** c |
| :---: | :---: |

${ }^{* *} \mathrm{c}$ has to be a NEW name.

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim $\forall: 1$
4. $b \geq a$
5. $\forall x(b \geq x) \quad$ Intro $\forall: 2,4$
6. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

These rules need more caveats...

There are extra conditions on using these rules:
$\frac{\text { Intro } \forall \text { "Let a be arbitrary*" } \ldots \mathrm{P}(\mathrm{a})}{\therefore \quad \forall x \mathrm{P}(\mathrm{x})}$

* in the domain of P

$\operatorname{Elim} \exists$	$\exists x \mathrm{P}(\mathrm{x})$
$\therefore \mathrm{P}(\mathrm{c})$ for some special** c	

** c has to be a NEW name.

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists \mathrm{y}(\mathrm{y} \geq \mathrm{a}) \quad$ Elim $\forall: 1$
4. $\mathrm{b} \geq \mathrm{a} \quad$ Elim $\exists: \mathrm{b}$
5. $\forall x(b \geq x) \quad$ Intro $\forall: 2,4$
6. $\exists y \forall x(y \geq x) \quad$ Intro $\exists: 5$

Can't get rid of a since another name in the same line, b, depends on it!

These rules need more caveats...

There are extra conditions on using these rules:

Over integer domain: $\forall x \exists y(y \geq x)$ is True but $\exists y \forall x(y \geq x)$ is False
BAD "PROOF"

1. $\forall x \exists y(y \geq x) \quad$ Given
2. Let a be an arbitrary integer
3. $\exists y(y \geq a) \quad \operatorname{Elim} \forall: 1$
4. $\mathrm{b} \geq \mathrm{a} \quad$ Elim \exists : b special depends on a

Can't get rid of a since another name in the same line, b, depends on it!

Inference Rules for Quantifiers: Full version

$\operatorname{lntrog} \rightarrow \frac{\mathrm{P}(\mathrm{c}) \text { for some } \mathrm{c}}{\therefore \quad \exists \mathrm{PP}(\mathrm{x})}$


```
** c is a NEW name.
List all dependencies for \(c\).
```

* in the domain of P. No other name in P depends on a

English Proofs

- We often write proofs in English rather than as fully formal proofs
- They are more natural to read
- English proofs follow the structure of the corresponding formal proofs
- Formal proof methods help to understand how proofs really work in English...
... and give clues for how to produce them.

[^0]: ** By special, we mean that c is a name for a value where $P(c)$ is true. We can't use anything else about that value, so c has to be a NEW name!

