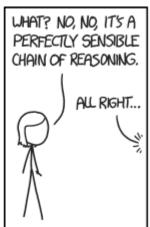
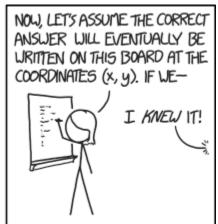
CSE 311: Foundations of Computing

Lecture 7: Propositional & Predicate Logic Proofs





- 2 HW corrections - can resubstit

before

making

Last class: My First Proof!

Show that r follows from p, $p \rightarrow q$, and $q \rightarrow r$

```
1. p Given
```

2.
$$p \rightarrow q$$
 Given

3.
$$q \rightarrow r$$
 Given

Modus Ponens
$$\xrightarrow{A ; A \rightarrow B}$$

Last class: Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

```
1. p \rightarrow q Given
```

2.
$$\neg q$$
 Given

3.
$$\neg q \rightarrow \neg p$$
 Contrapositive: 1

4.
$$\neg p$$
 MP: 2, 3

Modus Ponens 1.
$$p \rightarrow q$$
 Given 2. $\neg q$ Given 3. $\neg q \rightarrow p$ Contrapositive: 1 4. $\neg p$ MP: 2, 3

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim
$$\land$$
 $A \land B$
 $\therefore A, B$

Intro \land $A ; B$
 $\therefore A \land B$

Elim \lor $A \lor B ; \neg A$
 $\therefore B$

Intro \lor $A \lor B, B \lor A$

Modus Ponens $A ; A \rightarrow B$

Direct Proof

Show that r follows from p, p \rightarrow q and (p \land q) \rightarrow r

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \rightarrow B}{\therefore B}$$

$$A \wedge B$$
 $\therefore A, B$

Show that r follows from p, p \rightarrow q and (p \land q) \rightarrow r

Given

$$A : A \rightarrow B$$

2.
$$p \rightarrow q$$

Given

3.
$$(p \land q) \rightarrow r$$
 Given

Show that r follows from $p, p \rightarrow q$, and $(p \land q) \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

Given

2.
$$p \rightarrow q$$

Given

MP: 1, 2

4.
$$p \wedge q$$

Intro ∧: 1, 3

5.
$$(p \land q) \rightarrow r$$

Given

MP: 4, 5

$$\frac{p ; p \rightarrow q}{p ; q} MP$$

$$\frac{p ; p \rightarrow q}{q} Intro \land (p \land q) \rightarrow r$$

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \lor q$ Given

First: Write down givens and goal

20. $\neg r$

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

MP: 2,

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove q...
 - Notice that at this point, if we prove q, we've proven $\neg r$...

- **19.** *q*
- **20.** ¬*r*

?

MP: 2, 19

19.

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

This looks like or-elimination.

Elim∨ A ∨ B; ¬A

∴ B

20. $\neg r$ MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given

18. $\neg \neg s$

?

¬¬s doesn't show up in the givens but s does and we can use equivalences

- 19. *q* ∨ Elim: 3, 18
- 20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

```
1. p \wedge s Given
```

2.
$$q \rightarrow \neg r$$
 Given

3.
$$\neg s \lor q$$
 Given

```
1. p, 3 over 1. p 3 over 1. p
```

18. ¬¬s Double Negation: **17**

19. *q* ∨ Elim: 3, 18

20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

No holes left! We just

need to clean up a bit.

1. $p \wedge s$ Given

2. $q \rightarrow \neg r$ Given

3. $\neg s \lor q$ Given

17. *S* ∧ Elim: **1**

18. ¬¬*s* Double Negation: **17**

19. *q* ∨ Elim: 3, 18

20. ¬*r* MP: 2, 19

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

- 1. $p \wedge s$ Given
- 2. $q \rightarrow \neg r$ Given
- 3. $\neg s \lor q$ Given
- 4. **s** ∧ Elim: 1
- 5. ¬¬s Double Negation: 4
- 6. *q* ∨ Elim: 3, 5
- 7. $\neg r$ MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g.
$$(p \rightarrow r) \lor q \equiv (\neg p \lor r) \lor q$$

 Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given
2. $(p \lor q) \rightarrow r$ intro \lor from 1.

Does not follow! e.g. p=F, q=T, r=F

Last class: Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Elim ∧
$$A \land B$$

∴ A, B

Intro ∧ $A ; B$
∴ A ∧ B

Elim ∨ $A \lor B ; \neg A$
∴ B

Intro ∨ $A \lor B ; \neg A$
∴ A ∨ B, B ∨ A

Modus Ponens $A ; A \to B$
∴ B

Direct Proof $A \Rightarrow B$
∴ A → B

Not like other rules

Last class: New Perspective

Rather than comparing **A** and **B** as columns, zooming in on just the rows where **A** is true:

р	q	Α	В	
Т	Т	Т	Т	
Т	F	Т	Т	
F	Т	F		
F	F	F		

Given that A is true, we see that B is also true.

Last class: New Perspective

Rather than comparing **A** and **B** as columns, zooming in on just the rows where B is true:

р	q	Α	В	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

$$(\mathsf{A} \to \mathsf{B}) \equiv \mathsf{T}$$

To Prove An Implication: $A \rightarrow B$

We use the direct proof rule

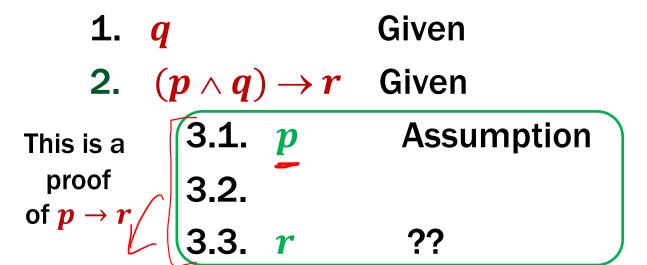
- $A \Rightarrow B$ $\therefore A \rightarrow B$
- The "pre-requisite" $A \Rightarrow B$ for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

Direct Proof



If we know p is true...

Then, we've shown
r is true

Proofs using the direct proof rule

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

1.
$$q$$
 Given
2. $(p \wedge q) \rightarrow r$ Given
3.1. p Assumption
3.2. $p \wedge q$ Intro \wedge : 1, 3.1
3.3. r MP: 2, 3.2
3. $p \rightarrow r$ Direct Proof

-There MUST be an application of the Direct Proof Rule (or an equivalence) to prove this implication.

Where do we start? We have no givens...

Prove: $(p \land q) \rightarrow (p \lor q)$

1.9.
$$p \vee q$$

$$\mathbf{1.} \quad (\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow (\boldsymbol{p} \vee \boldsymbol{q})$$

Direct Proof

Prove: $(p \land q) \rightarrow (p \lor q)$

Fig. 1.1. $p \wedge q$ 1.2. p

Assumption

Elim ∧: **1.1**

Intro ∨: **1.2**

Direct Proof

One General Proof Strategy

- 1. Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- 2. Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

$$\nearrow$$
 1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 Direct Proof

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1.
$$(p \rightarrow q) \land (q \rightarrow r)$$
 Assumption

1.2.
$$p \rightarrow q$$
 \wedge Elim: 1.1

1.3.
$$q \rightarrow r$$
 \wedge Elim: 1.1

1.?
$$p \rightarrow r$$

1.
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$
 Direct Proof

Prove:
$$((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$$

1.1. $(p \rightarrow q) \land (q \rightarrow r)$ Assumption

1.2. $p \rightarrow q$ \land Elim: 1.1

1.3. $q \rightarrow r$ \land Elim: 1.1

1.4.1. p Assumption

1.4.2. q MP: 1.2, 1.4.1

1.4.3. r MP: 1.3, 1.4.2

1.4. $p \rightarrow r$ Direct Proof

1. $((p \rightarrow q) \land (q \rightarrow r)) \rightarrow (p \rightarrow r)$ Direct Proof

Inference Rules for Quantifiers: First look

P(c) for some c

$$\exists x P(x)$$

$$\Rightarrow P(a) \text{ (for any a)}$$

** By special, we mean that c is a name for a value where P(c) is true. We can't use anything else about that value, so c has to be a NEW name!

Domain of Discourse Integers

$$\mathbf{Prove}(\forall x \ \mathsf{P}(x)) \to (\exists x \ \mathsf{P}(x))$$

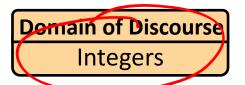
P(c) for some c
$$\therefore \exists x P(x)$$

$$\forall x P(x)$$

$$\therefore P(a) \text{ for any } a$$

$$5. \ \, \left(\forall x \, P(x) \right) \rightarrow \left(\exists x \, P(x) \right)$$

The main connective is implication so Direct Proof seems good



Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

P(c) for some c

∴
$$\exists x P(x)$$

Elim \forall

P(a) for any a

We need an ∃ we don't have so "intro ∃" rule makes sense

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

Domain of Discourse Integers

Prove $\forall x P(x) \rightarrow \exists x P(x)$

P(c) for some c
∴
$$\exists x P(x)$$

Elim \forall
∴ P(a) for any a

1.1. $\forall x P(x)$ Assumption

We need an ∃ we don't have so "intro ∃" rule makes sense

1.5.
$$\exists x P(x)$$

That requires P(c) for some c.

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

Domain of Discourse Integers

Prove $\forall x P(x) \rightarrow \exists x P(x)$

1. $\forall x P(x) \rightarrow \exists x P(x)$ Dir

Direct Proof

1.1. $\forall x P(x)$

Assumption

1.4. P(5)1.5. $\exists x P(x)$ (}

Intro ∃: **1.4**

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

Domain of Discourse Integers

Prove
$$\forall x P(x) \rightarrow \exists x P(x)$$

1. $\forall x P(x) \rightarrow \exists x P(x)$ Direct Proof

1.1. $\forall x P(x)$

Assumption

1.4. P(5)1.5. $\exists x P(x)$

1. $\forall x P(x) \rightarrow \exists x P(x)$

Elim ∀: 1.1 Intro ∃: 1.4

Direct Proof

$$\begin{array}{c}
P(c) \text{ for some c} \\
\therefore \quad \exists x P(x)
\end{array}$$

Prove
$$\forall x P(x) \rightarrow (\exists x P(x))$$

$$\forall x P(x)$$

$$\therefore P(a) \text{ for any } a$$

1.1.
$$\forall x P(x)$$

1.2. $P(5)$
1.3. $\exists x P(x)$

Assumption

Elim ∀: **1.1**

Intro ∃: **1.2**

1. $\forall x P(x) \rightarrow \exists x P(x)$

Direct Proof

Working forwards as well as backwards:

In applying "Intro ∃" rule we didn't know what expression we might be able to prove P(c) for, so we worked forwards to figure out what might work.

Predicate Logic Proofs

- Can use
 - Predicate logic inference rules whole formulas only
 - Predicate logic equivalences (De Morgan's)
 even on subformulas
 - Propositional logic inference rules whole formulas only
 - Propositional logic equivalences
 even on subformulas

Predicate Logic Proofs with more content

- In propositional logic we could just write down other propositional logic statements as "givens"
- Here, we also want to be able to use domain knowledge so proofs are about something specific
- Example: Domain of Discourse Integers
- Given the basic properties of arithmetic on integers, define:

Predicate Definitions

Even(x) :=
$$\exists y (x = 2 \cdot y)$$

Odd(x) := $\exists y (x = 2 \cdot y + 1)$