
CSE 311: Foundations of Computing

Lecture 6: Predicate Logic, Logical Inference



Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

∀x P(x)

P(x) is true for every x in the domain

read as “for all x, P of x”

∃x P(x) 

There is an x in the domain for which P(x) is true

read as “there exists x, P of x”



Last class: Predicate Logic to English (Natural)

Even(x) ::= “x is even”

Odd(x) ::= “x is odd”

Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”

Equal(x, y) ::= “x = y”

Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers

Domain of Discourse

∀x ∃y Greater(y, x)

∃y ∀x Greater(y, x)

∀x ∃y (Greater(y, x) ∧ Prime(y))

Translate the following statements to English

For every positive integer, there is a larger positive integer.

There is a positive integer that is larger than every other positive integer.

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names



Last class: English to Predicate Logic (Domain Restriction)

“All red cats like tofu” 

“Some red cats don’t like tofu” 

Cat(x) ::= “x is a cat”

Red(x) ::= “x is red”

LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals

Domain of Discourse

∀x ((Red(x) ∧ Cat(x)) → LikesTofu(x))

∃y ((Red(y) ∧ Cat(y)) ∧ ¬LikesTofu(y))



Last class: Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”

Predicate Definitions

(*) ∀x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?

(a) “there exists a purple fruit”

(b) “there exists a non-purple fruit”

(c) “all fruits are not purple”

{plum, apple}

Domain of Discourse

(*)  PurpleFruit(plum) ∧ PurpleFruit(apple)

(a) PurpleFruit(plum) ∨ PurpleFruit(apple)

(b) ¬ PurpleFruit(plum) ∨ ¬ PurpleFruit(apple)

(c) ¬ PurpleFruit(plum) ∧ ¬ PurpleFruit(apple)



Last class: De Morgan’s Laws for Quantifiers

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)

Intuition: ∀ is like a giant AND over the domain

∃ is like a giant OR over the domain



Last class: De Morgan’s Laws for Quantifiers

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)

These are equivalent but not equal

They have different English translations, e.g.:

There is no unicorn

Every animal is not a unicorn

¬ ∃x Unicorn(x)

∀x ¬ Unicorn(x)



Last class: De Morgan’s Laws for Quantifiers

¬ ∃ x ∀ y  ( x ≥ y)

≡ ∀ x ¬ ∀y  ( x ≥ y)

≡ ∀ x  ∃ y ¬ ( x ≥ y)

≡ ∀ x  ∃ y  (y > x)

“There is no integer at least as large as every other integer”

“For every integer, there is a larger integer”

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)



De Morgan’s Laws for Quantifiers

¬ ∃x (Even(x) ∧ Prime(x) ∧ Greater(x, 2))

≡ ∀x ¬(Even(x) ∧ Prime(x) ∧ Greater(x, 2))

≡ ∀x (¬(Even(x) ∧ Prime(x)) ∨ ¬Greater(x, 2))

≡ ∀x ((Even(x) ∧ Prime(x)) → ¬Greater(x, 2))

≡ ∀x ((Even(x) ∧ Prime(x)) → LessEq(x, 2))

“No even prime is greater than 2”

“Every even prime is less than or equal to 2.”

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)



De Morgan’s Laws for Quantifiers

¬ ∃x (P(x) ∧ R(x)) ≡ ∀x (P(x) → ¬ R(x))

De Morgan’s Laws respect domain restrictions!

(It leaves them in place and only negates the other parts.)

¬∀x (P(x) → R(x)) ≡ ∃x (P(x) ∧ ¬ R(x))

We just saw that

Can similarly show that



De Morgan’s Laws for Quantifiers

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)

¬ ∃x (P(x) ∧ R(x))  ≡ ∀x (P(x) → ¬ R(x))

¬∀x (P(x) → R(x)) ≡ ∃x (P(x) ∧ ¬ R(x))

Remain true when domain restrictions are used:



Scope of Quantifiers

∃x  (P(x) ∧ Q(x)) vs. (∃x P(x)) ∧ (∃x Q(x))



Scope of Quantifiers

∃x (P(x) ∧ Q(x)) vs. (∃x P(x)) ∧ (∃x Q(x))

This one asserts P 

and Q of the same x.

This one asserts P and Q 

of potentially different x’s.



Scope of Quantifiers

Example: NotLargest(x)  ≡ ∃ y Greater (y, x)                          

≡ ∃ z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”

does depend on x “free variable”

quantifiers only act on free variables of the formula 

they quantify

∀ x (∃ y (P(x,y) → ∀ x Q(y, x)))



Quantifier “Style”

∀x(∃y (P(x,y) → ∀ x Q(y, x)))

This isn’t “wrong”, it’s just horrible style.

Don’t confuse your reader by using the same 

variable multiple times…there are a lot of letters…



Nested Quantifiers

• Quantified variable names don’t matter

∀x ∃y P(x, y) ≡ ∀a ∃b P(a, b)

• Positions of quantifiers can sometimes change

∀x (Q(x) ∧ ∃y P(x, y)) ≡ ∀x ∃y (Q(x) ∧ P(x, y))

• But:   order is important...



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”

Predicate Definitions

x

y

1   2   3   4

1

2

3

4

T F F F

T T F F

T T T F

T T T T

∃x ∀y GreaterEq(x, y)))

{1, 2, 3, 4}

Domain of Discourse



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”

Predicate Definitions

“Every number has a number greater than or equal to it.”

y

1   2   3   4

1

2

3

4

T F F F

T T F F

T T T F

T T T T

∃x ∀y GreaterEq(x, y)))

∀y ∃x GreaterEq(x, y)))

{1, 2, 3, 4}

Domain of Discourse

x



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”

Predicate Definitions

“Every number has a number greater than or equal to it.”

y

1   2   3   4

1

2

3

4

T F F F

T T F F

T T T F

T T T T

The purple statement requires an entire row to be true.

The red statement requires one entry in each column to be true.

∃x ∀y GreaterEq(x, y)))

∀y ∃x GreaterEq(x, y)))

Important: both include the case x = y

Different names does not imply different objects!

{1, 2, 3, 4}

Domain of Discourse

x



Quantification with Two Variables

expression when true when false

∀x ∀ y P(x, y) Every pair is true. At least one pair is false.

∃ x ∃ y P(x, y) At least one pair is true. All pairs are false.

∀ x ∃ y P(x, y) We can find a specific y for 

each x.

(x1, y1), (x2, y2), (x3, y3)

Some x doesn’t have a 

corresponding y.

∃ y ∀ x P(x, y) We can find ONE y that 

works no matter what x is.

(x1, y), (x2, y), (x3, y)

For any candidate y, there is 

an x that it doesn’t work for.

1   2   3   4

1

2

3

4

T F F F

T T F F

T T T F

T T T T



Logical Inference

• So far we’ve considered:

– How to understand and express things using 
propositional and predicate logic

– How to compute using Boolean (propositional) logic

– How to show that different ways of expressing or 
computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know

– Equivalence is a small part of this



New Perspective

Rather than comparing A and B as columns,

zoom in on just the rows where A is true:

p q A B

T T T

T F T

F T F

F F F



New Perspective

Rather than comparing A and B as columns,

zoom in on just the rows where A is true:

Given that A is true, we see that B is also true. 

p q A B

T T T T

T F T T

F T F

F F F

A ⇒ B



New Perspective

Rather than comparing A and B as columns,

zoom in on just the rows where A is true:

When we zoom out, what have we proven?

p q A B

T T T T

T F T T

F T F ?

F F F ?



New Perspective

Rather than comparing A and B as columns,

zoom in on just the rows where B is true:

When we zoom out, what have we proven?

p q A B A → B

T T T T T

T F T T T

F T F T T

F F F F T

(A → B) ≡ T



New Perspective

Equivalences

A ≡ B and (A ↔ B) ≡ T are the same

Inference

A ⇒ B and (A → B) ≡ T are the same

Can do the inference by  zooming in 

to the rows where A is true



Applications of Logical Inference

• Software Engineering

– Express desired properties of program as set of logical 
constraints

– Use inference rules to show that program implies that 
those constraints are satisfied

• Artificial Intelligence

– Automated reasoning 

• Algorithm design and analysis

– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog

– Express desired outcome as set of constraints

– Automatically apply logic inference to derive solution



Proofs

• Start with given facts (hypotheses)

• Use rules of inference to extend set of facts

• Result is proved when it is included in the set



An inference rule:  Modus Ponens

• If A and A → B are both true, then B must be true

• Write this rule as

• Given: 

– If it is Friday, then you have a 311 class today. 

– It is Friday.

• Therefore, by Modus Ponens:  

– You have a 311 class today.

A ; A → B

∴ B



My First Proof!

Show that r follows from p, p → q, and q → r

1.  �  Given

2. � → � Given

3. � � � Given

4.

5.

Modus Ponens



My First Proof!

Show that r follows from p, p → q, and q → r

1.  � Given

2. � → � Given

3. � � � Given

4. � MP: 1, 2

5. � MP: 3, 4

Modus Ponens



1. � → � Given

2. �� Given

3. �� � �� Contrapositive: 1

4. �� MP: 2, 3

Proofs can use equivalences too

Show that ¬p follows from p → q and ¬q

Modus Ponens



Inference Rules

A  ;  B 

∴ C  ,  D

A  ;  A → B   

∴ B   

Requirements:

Conclusions:

If A is true and B is true ….

Then, C must 

be true

Then D must 

be true

Example (Modus Ponens):

If I have A and A → B both true,

Then B must be true.



Axioms:  Special inference rules

∴ C  ,  D

∴ A ∨¬A 

Requirements:

Conclusions:

If I have nothing…

Example (Excluded Middle):

A ∨¬A must be true.

Then D must 

be true
Then, C must 

be true



Simple Propositional Inference Rules

Two inference rules per binary connective,

one to eliminate it and one to introduce it

A ∧ B

∴ A, B

A ; B   

∴ A ∧ B 

A              x

∴ A ∨ B, B ∨ A

A ; A → B

∴ B

A  B  

∴ A → B

Not like other rules

Elim ∧ Intro  ∧

A ∨ B ; ¬A

∴ B
Elim ∨ Intro  ∨

Modus Ponens Direct Proof



Proofs

Show that r follows from p, p → q and (p ∧ q) → r

A ; A → B

∴ B

How To Start:

We have givens, find the ones that go 

together and use them.  Now, treat new

things as givens, and repeat.

A ∧ B

∴ A, B

A ; B   

∴ A ∧ B 



Proofs

Show that � follows from �, � → �, and � ∧ � → �

1. � Given

2. � → � Given

3. � MP: 1, 2

4. � ∧ � Intro ∧: 1, 3

5. � ∧ � → � Given

6. � MP: 4, 5

�� ;

� ∧ �    ; � ∧ � → �

�

MP

Intro ∧

MP

Two visuals of the same proof.

We will use the top one, but if 

the bottom one helps you 

think about it, that’s great!

�  ;   � → �



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ � Given

2. � → � Given

3. � ∨ � Given

20. � Idea: Work backwards!

First: Write down givens 

and goal



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ � Given

2. � → � Given

3. � ∨ � Given

20. � MP: 2,

Idea: Work backwards!

We want to eventually get ��.  How?

• We can use � → � to get there.

• The justification between 2 and 20 

looks like “elim →” which is MP.



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ � Given

2. � → � Given

3. � ∨ � Given

19. �

20. � MP: 2, 19

Idea: Work backwards!

We want to eventually get �.  How?

• Now, we have a new “hole”

• We need to prove �…

• Notice that at this point, if we 

prove �, we’ve proven �…



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ � Given

2. � → � Given

3. � ∨ � Given

19. �

20. � MP: 2, 19

This looks like or-elimination.



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ � Given

2. � → � Given

3. � ∨ � Given

18. �

19. � ∨ Elim: 3, 18

20. � MP: 2, 19

� doesn’t show up in the givens but

� does and we can use equivalences



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ � Given

2. � → � Given

3. � ∨ � Given

17. �

18. � Double Negation: 17

19. � ∨ Elim: 3, 18

20. � MP: 2, 19 



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ � Given

2. � → � Given

3. � ∨ � Given

17. � ∧ Elim: 1

18. � Double Negation: 17

19. � ∨ Elim: 3, 18

20. � MP: 2, 19 

No holes left!  We just 

need to clean up a bit.



Prove that ¬r follows from p ∧ s, q → ¬r, and ¬s ∨ q.

Proofs

1. � ∧ � Given

2. � → � Given

3. � ∨ � Given

4. � ∧ Elim: 1

5. � Double Negation: 4

6. � ∨ Elim: 3, 5

7. � MP: 2, 6 



• You can use equivalences to make substitutions

of any sub-formula.

e.g.  �� �  � � ≡ � � �  � �

• Inference rules only can be applied to whole 

formulas (not correct otherwise).

e.g. 1.  � → � given

2.  (� � �) � � intro ∨ from 1.

Important: Applications of Inference Rules

Does not follow! e.g . p=F, q=T, r=F



To Prove An Implication: � → �

• We use the direct proof rule

• The “pre-requisite” A  B for the direct proof rule 

is a proof that “Given A, we can prove B.”

• The direct proof rule:

If you have such a proof then you can conclude        

that A → B is true

A  B  

∴ A → B



To Prove An Implication: � → �

• We use the direct proof rule

• The “pre-requisite” A  B for the direct proof rule 

is a proof that “Given A, we can prove B.”

• The direct proof rule:

If you have such a proof then you can conclude        

that A → B is true

Example: Prove p → (p ∨ q).

1.1. � Assumption

1.2.   � � � Intro ∨: 1                          

1.   � � (� � �) Direct Proof

proof subroutine

Indent proof

subroutine

A  B  

∴ A → B



Proofs using the direct proof rule

Show that p → r follows from q and (p ∧ q) → r

1.   � Given

2. (� � �) � � Given

3.1. � Assumption

3.2.   � � � Intro ∧: 1, 3.1

3.3.   � MP: 2, 3.2

3.    � → � Direct Proof

This is a 

proof

of � → �

If we know � is true…

Then, we’ve shown     

r is true



Prove:  (p ∧ q) → (p ∨ q)

Example

There MUST be an application of the

Direct Proof Rule (or an equivalence)

to prove this implication.

Where do we start?  We have no givens…



Example

Prove:  (p ∧ q) → (p ∨ q)



Example

Prove:  (p ∧ q) → (p ∨ q)

1.1. � � � Assumption

1.2.   � Elim ∧: 1.1

1.3.   � � � Intro ∨: 1.2

1. (� ∧ �) � (� � �) Direct Proof



One General Proof Strategy

1. Look at the rules for introducing connectives to 

see how you would build up the formula you want 

to prove from pieces of what is given

2. Use the rules for eliminating connectives to break 

down the given formulas so that you get the 

pieces you need to do 1.

3. Write the proof beginning with what you figured 

out for 2 followed by 1.


