CSE 311: Foundations of Computing

Lecture 6: Predicate Logic, Logical Inference

We use *quantifiers* to talk about collections of objects.

∀x P(x)
P(x) is true for every x in the domain read as "for all x, P of x"

∃x P(x)

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Last class: Predicate Logic to English (Natural)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x∃y Greater(y, x)

For every positive integer, there is a larger positive integer.

∃y ∀x Greater(y, x)

There is a positive integer that is larger than every other positive integer.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

Last class: English to Predicate Logic (Domain Restriction)

Domain of Discourse Mammals Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"All red cats like tofu"

 $\forall x ((\text{Red}(x) \land \text{Cat}(x)) \rightarrow \text{LikesTofu}(x))$

"Some red cats don't like tofu"

 $\exists y ((\text{Red}(y) \land \text{Cat}(y)) \land \neg \text{LikesTofu}(y))$

Last class: Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

- (*) $\forall x PurpleFruit(x)$ ("All fruits are purple")
 - What is the negation of (*)?
 - (a) "there exists a purple fruit"
 - (b) "there exists a non-purple fruit"
 - (c) "all fruits are not purple"

Domain of Discourse {plum, apple}

- (*) PurpleFruit(plum) ^ PurpleFruit(apple)
 - (a) PurpleFruit(plum) v PurpleFruit(apple)
 - (b) ¬ PurpleFruit(plum) ∨ ¬ PurpleFruit(apple)
 - (c) ¬ PurpleFruit(plum) ∧ ¬ PurpleFruit(apple)

Last class: De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

Intuition: \forall is like a giant AND over the domain \exists is like a giant OR over the domain

Last class: De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

These are equivalent but not equal

They have different English translations, e.g.:

There is no unicorn $\neg \exists x Unicorn(x)$

Every animal is not a unicorn $\forall x \neg$ Unicorn(x)

Last class: De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no integer at least as large as every other integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

"For every integer, there is a larger integer"

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"No even prime is greater than 2"

- $\neg \exists x (Even(x) \land Prime(x) \land Greater(x, 2))$
- $\equiv \forall x \neg (Even(x) \land Prime(x) \land Greater(x, 2))$
- $\equiv \forall x (\neg(Even(x) \land Prime(x)) \lor \neg Greater(x, 2))$
- $\equiv \forall x ((Even(x) \land Prime(x)) \rightarrow \neg Greater(x, 2))$
- $\equiv \forall x ((Even(x) \land Prime(x)) \rightarrow LessEq(x, 2))$

"Every even prime is less than or equal to 2."

We just saw that

$$\neg \exists x (P(x) \land R(x)) \equiv \forall x (P(x) \rightarrow \neg R(x))$$

Can similarly show that

$$\neg \forall x (P(x) \rightarrow R(x)) \equiv \exists x (P(x) \land \neg R(x))$$

De Morgan's Laws respect domain restrictions! (It leaves them in place and only negates the other parts.)

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

Remain true when domain restrictions are used:

$$\neg \exists x (P(x) \land R(x)) \equiv \forall x (P(x) \rightarrow \neg R(x)) \neg \forall x (P(x) \rightarrow R(x)) \equiv \exists x (P(x) \land \neg R(x))$$

 $\exists x (P(x) \land Q(x))$ VS. $(\exists x P(x)) \land (\exists x Q(x))$

 $\exists x \ (P(x) \land Q(x)) \qquad \forall s. \quad (\exists x \ P(x)) \land (\exists x \ Q(x))$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

Example: NotLargest(x)
$$\equiv \exists$$
 y Greater (y, x)
 $\equiv \exists$ z Greater (z, x)

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula they quantify

 $\forall \mathsf{x} (\exists \mathsf{y} (\mathsf{P}(\mathsf{x},\mathsf{y}) \to \forall \mathsf{x} \mathsf{Q}(\mathsf{y},\mathsf{x})))$

Quantifier "Style"

This isn't "wrong", it's just horrible style. Don't confuse your reader by using the same variable multiple times...there are a lot of letters... • Quantified variable names don't matter

$$\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$$

- Positions of quantifiers can <u>sometimes</u> change $\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$
- But: order is important...

Quantifier Order Can Matter

Quantifier Order Can Matter

Quantifier Order Can Matter

The purple statement requires an entire row to be true. The red statement requires one entry in each column to be true.

Important: both include the case x = y

Different names does not imply different objects!

Quantification with Two Variables

expression	when true	when false
$\forall x \forall y P(x, y)$	Every pair is true.	At least one pair is false.
∃ x ∃ y P(x, y)	At least one pair is true.	All pairs are false.
∀ x ∃ y P(x, y)	We can find a specific y for each x. $(x_1, y_1), (x_2, y_2), (x_3, y_3)$	Some x doesn't have a corresponding y.
∃ y ∀ x P(x, y)	We can find ONE y that works no matter what x is. $(x_1, y), (x_2, y), (x_3, y)$	For any candidate y, there is an x that it doesn't work for.

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - Equivalence is a small part of this

Rather than comparing A and B as columns, zoom in on just the rows where A is true:

р	q	Α	В	
Т	Т	Т		
Т	F	Т		
F	Т	F		
F	F	F		

Rather than comparing A and B as columns, zoom in on just the rows where A is true:

Given that A is true, we see that B is also true.

 $A \Rightarrow B$

Rather than comparing A and B as columns, zoom in on just the rows where A is true:

When we zoom out, what have we proven?

Rather than comparing A and B as columns, zoom in on just the rows where B is true:

р	q	Α	В	$A \rightarrow B$
Т	Т	Т	Т	Т
Т	F	Т	Т	Т
F	Т	F	Т	Т
F	F	F	F	Т

When we zoom out, what have we proven?

 $(A \rightarrow B) \equiv T$

New Perspective

Equivalences

 $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

Inference

 $A \Rightarrow B$ and $(A \rightarrow B) \equiv T$ are the same

Can do the inference by zooming in to the rows where A is true

Applications of Logical Inference

• Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

- If A and $A \rightarrow B$ are both true, then B must be true
- Write this rule as $A : A \to B$ $\therefore B$
- Given:
 - If it is Friday, then you have a 311 class today.
 - It is Friday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	p	Given
2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
3.	$q \rightarrow r$	Given
4.		
5.		

Modus Ponens
$$A : A \rightarrow B$$

 $\therefore B$

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	p	Given
2.	p ightarrow q	Given
3.	$q \rightarrow r$	Given
4.	\boldsymbol{q}	MP: 1, 2
5.	r	MP: 3, 4

Modus Ponens
$$A : A \to B$$

 $\therefore B$

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

Modus Ponens
$$A : A \to B$$

 $\therefore B$

Inference Rules

Example (Modus Ponens):

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules

Example (Excluded Middle):

∴ A ∨¬A

 $A \lor \neg A$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

Not like other rules

Show that **r** follows from **p**, **p** \rightarrow **q** and (**p** \land **q**) \rightarrow **r**

How To Start:

We have givens, find the ones that go together and use them. Now, treat new things as givens, and repeat.

$$\frac{A ; A \rightarrow B}{\therefore B}$$

 $\frac{A \land B}{\therefore A, B}$

Show that **r** follows from $p, p \rightarrow q$, and $p \land q \rightarrow r$

Two visuals of the same proof. We will use the top one, but if the bottom one helps you think about it, that's great!

$$\begin{array}{cccc} p & ; & p \rightarrow q \\ p & ; & q \\ \hline p \wedge q & ; & p \wedge q \rightarrow r \\ \hline r \end{array}$$

1.	p	Given
2.	$oldsymbol{p} ightarrow oldsymbol{q}$	Given
3.	<i>q</i>	MP: 1, 2
4.	$\boldsymbol{p}\wedge \boldsymbol{q}$	Intro ∧: 1, 3
5.	$p \wedge q \rightarrow r$	Given
6.	r	MP: 4, 5

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

First: Write down givens and goal

Idea: Work backwards!

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- We can use $q \rightarrow \neg r$ to get there.
- The justification between 2 and 20 looks like "elim →" which is MP.

20. ¬*r*

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

Idea: Work backwards!

We want to eventually get $\neg r$. How?

- Now, we have a new "hole"
- We need to prove *q*...
 - Notice that at this point, if we prove *q*, we've proven ¬*r*...

18. ¬¬*s*

Prove that $\neg r$ follows from $p \land s$, $q \rightarrow \neg r$, and $\neg s \lor q$.

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given

¬¬*s* doesn't show up in the givens but *s* does and we can use equivalences

- 19. *q* V Elim: 3, 18
- 20. ¬*r* MP: 2, 19

1.	$p \wedge s$	Given
2.	$oldsymbol{q} ightarrow eg r$	Given
3.	$\neg s \lor q$	Given
17.	S	?
18.	¬¬ \$	Double Negation: 17
19.	q	∨ Elim: 3, 18
20.	$\neg r$	MP: 2, 19

1.	$\boldsymbol{p} \wedge \boldsymbol{s}$	Given	No holes left! We just
2.	q ightarrow eg r	Given	need to clean up a bit.
3.	$\neg s \lor q$	Given	
17.	<i>S</i>	∧ Elim: 1	
18.	$\neg \neg S$	Double Negation: 17	
19.	q	∨ Elim: 3, 18	
20.	$\neg r$	MP: 2, 19	

1.	$p \wedge s$	Given
2.	q ightarrow eg r	Given
3.	$\neg s \lor q$	Given
4.	<i>S</i>	∧ Elim: 1
5.	$\neg \neg S$	Double Negation: 4
6.	q	∨ Elim: 3, 5
7.	$\neg r$	MP: 2, 6

Important: Applications of Inference Rules

 You can use equivalences to make substitutions of any sub-formula.

e.g.
$$(p \rightarrow r) \lor q \equiv (\neg p \lor r) \lor q$$

 Inference rules only can be applied to whole formulas (not correct otherwise).

e.g. 1.
$$p \rightarrow r$$
 given
2. $(p \lor q) \Rightarrow r$ intro \lor from 1.
Does not follow! e.g. p=F, q=T, r=F

To Prove An Implication: $A \rightarrow B$

$$A \Longrightarrow B$$

 $\therefore A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" A ⇒ B for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $A \rightarrow B$ is true

To Prove An Implication: $A \rightarrow B$

 $A \Rightarrow B$

 $\therefore A \rightarrow B$

- We use the direct proof rule
- The "pre-requisite" A ⇒ B for the direct proof rule is a proof that "Given A, we can prove B."
- The direct proof rule:

If you have such a proof then you can conclude that $\mathsf{A} \to \mathsf{B}$ is true

Example:	Prove $\mathbf{p} \rightarrow (\mathbf{p} \lor \mathbf{q})$.	proof subroutine
Indent proof	1.1. <i>p</i>	Assumption
subroutine 🥣	1.2. <i>p</i> ∨ <i>q</i>	Intro ∨: 1
1.	$p \rightarrow (p \lor q)$	Direct Proof

Show that $p \rightarrow r$ follows from q and $(p \land q) \rightarrow r$

Example

Where do we start? We have no givens...

Prove: $(p \land q) \rightarrow (p \lor q)$

Prove: $(\mathbf{p} \land \mathbf{q}) \rightarrow (\mathbf{p} \lor \mathbf{q})$

- 1.1. *p* ∧ *q*
- 1.2. *p*
- **1.3.** *p* ∨ *q*
- **1.** $(p \land q) \rightarrow (p \lor q)$

Assumption Elim A: 1.1 Intro V: 1.2 Direct Proof

- Look at the rules for introducing connectives to see how you would build up the formula you want to prove from pieces of what is given
- Use the rules for eliminating connectives to break down the given formulas so that you get the pieces you need to do 1.
- 3. Write the proof beginning with what you figured out for 2 followed by 1.