CSE 311: Foundations of Computing

Lecture 6: Predicate Logic, Logical Inference

Last Class: Quantifiers

We use quantifiers to talk about collections of objects.
$\forall x P(x)$
$P(x)$ is true for every x in the domain read as "for all x, P of x "
$\exists \mathrm{x}$ P(x)
There is an x in the domain for which $P(x)$ is true read as "there exists x, P of x "

Last class: Predicate Logic to English (Natural)

Domain of Discourse
Positive Integers

Predicate Definitions	
Even $(x)::=$ " x is even"	Greater $(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
For every positive integer, there is a larger positive integer.
$\exists y \forall x$ Greater (y, x)
There is a positive integer that is larger than every other positive integer.
$\forall x \exists y$ (Greater $(\mathrm{y}, \mathrm{x}) \wedge$ Prime $(\mathrm{y}))$
For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

Last class: English to Predicate Logic (Domain Restriction)

Domain of Discourse
Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu $(x)::=$ " x likes tofu"

"All red cats like tofu"

$\forall x((\operatorname{Red}(\mathrm{x}) \wedge \operatorname{Cat}(\mathrm{x})) \rightarrow$ LikesTofu(x))

"Some red cats don't like tofu"

$\exists \mathrm{y}((\operatorname{Red}(\mathrm{y}) \wedge \operatorname{Cat}(\mathrm{y})) \wedge \neg$ LikesTofu(y))
 \longrightarrow

Last class: Negations of Quantifiers

Predicate Definitions
PurpleFruit $(x)::=$ " x is a purple fruit"

$\left(^{*}\right) \forall x$ PurpleFruit(x) ("All fruits are purple")
What is the negation of (*)?
(a) "there exists a purple fruit"
(b) "there exists a non-purple fruit"
(c) "all fruits are not purple"

Last class: De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{xP}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

Intuition: \forall is like a giant AND over the domain \exists is like a giant OR over the domain

Last class: De Morgan's Laws for Quantifiers

$$
\begin{aligned}
\neg \forall x P(x) & \equiv \exists x \neg P(x) \\
\neg \exists x P(x) & \equiv \forall x \neg P(x)
\end{aligned}
$$

These are equivalent but not equal
They have different English translations, e.g.:

There is no unicorn
Every animal is not a unicorn $\quad \forall x \neg$ Unicorn (x)

Last class: De Morgan's Laws for Quantifiers

$$
\begin{aligned}
\neg \forall \mathrm{xP}(\mathrm{x}) & \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
\neg \exists \mathrm{xP}(\mathrm{x}) & \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

"There is no integer at least as large as every other integer"

$$
\begin{aligned}
& \neg \exists \mathrm{x} \forall \mathrm{y}(\mathrm{x} \geq \mathrm{y}) \\
& \equiv \forall \mathrm{x} \neg \forall \mathrm{y}(\mathrm{x} \geq \mathrm{y}) \\
& \equiv \forall \mathrm{x} \exists \mathrm{y} \neg(\mathrm{x} \geq \mathrm{y}) \\
& \equiv \forall \mathrm{x} \exists \mathrm{y}(\mathrm{y}>\mathrm{x})
\end{aligned}
$$

"For every integer, there is a larger integer"

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
\neg \forall \mathrm{x} P(\mathrm{x}) & \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
\neg \exists \mathrm{xP}(\mathrm{x}) & \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

"No even prime is greater than 2"

$$
\begin{aligned}
& \equiv \forall x \neg(E \operatorname{ven}(x) \wedge \text { Prime }(x)) \wedge \text { Greater }(x, 2)) \\
& \equiv \forall x(\neg(\operatorname{Even}(x) \wedge \operatorname{Prime}(x)) \downarrow \text { Greater }(x, 2)) \\
& \equiv \forall x((\hat{E v e n}(x) \wedge \operatorname{Prime}(x)) \rightarrow \neg \text { Greater }(\mathrm{x}, 2)) \\
& \equiv \forall x((E v e n(x) \wedge \operatorname{Prime}(x)) \rightarrow \operatorname{LessEq}(x, 2))
\end{aligned}
$$

"Every even prime is less than or equal to 2."

De Morgan's Laws for Quantifiers

We just saw that

$$
\neg \exists x(P(x) \wedge R(x)) \equiv \forall x(P(x) \rightarrow \neg R(x))
$$

Can similarly show that

$$
\neg \forall x(P(x) \rightarrow R(x)) \equiv \exists x(P(x) \wedge \neg R(x))
$$

De Morgan's Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{xP}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

Remain true when domain restrictions are used:

$$
\begin{aligned}
& \neg \exists x(P(x) \wedge R(x)) \equiv \forall x(P(x) \rightarrow \neg R(x)) \\
& \neg \forall x(P(x) \rightarrow R(x)) \equiv \exists x(P(x) \wedge \neg R(x))
\end{aligned}
$$

Scope of Quantifiers

$$
\exists x(P(x) \wedge Q(x)) \quad \text { vs. } \quad(\exists x P(x)) \wedge(\exists x Q(x))
$$

Scope of Quantifiers

$$
\exists x(\underset{-}{(P(x)} \wedge Q(x)) \quad \text { vs. } \quad(\exists x P(x)) \wedge(\underset{-}{\exists x} \mathrm{Q}(x))
$$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

Scope of Quantifiers

Example: NotLargest(x) $\equiv \exists \mathrm{y}$ Greater (y, x)

$$
\equiv \frac{1}{\beth} \text { Greater }(\bar{z}, x) \text {) }
$$

truth value:
doesn't depend on y or z "bound variables" does depend on x "free variable"
quantifiers only act on free variables of the formula they quantify

$$
\forall x\left(\exists y\left(P(x, y) \rightarrow \frac{\forall x \mathrm{Q}(y, x))}{z}\right)\right.
$$

Quantifier "Style"

This isn't "wrong", it's just horrible style.
Don't confuse your reader by using the same variable multiple times...there are a lot of letters...

Nested Quantifiers

- Quantified variable names don't matter

$$
\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)
$$

- Positions of quantifiers can sometimes change

$$
\forall x(Q(x) \wedge \exists y P(x, y)) \equiv \forall x \exists y(Q(x) \wedge P(x, y))
$$

- But: order is important...

Quantifier Order Can Matter

Domain of Discourse
$\{1,2,3,4\}$

Predicate Definitions
$\operatorname{GreaterEq}(\mathrm{x}, \mathrm{y})::=$ " $\mathrm{x} \geq \mathrm{y}$ "

y
"There is a number greater than or equal to all numbers." $\exists x \forall y$ GreaterEq($x, y)))$

Quantifier Order Can Matter

Domain of Discourse
$\{1,2,3,4\}$

"There is a number greater than or equal to all numbers." $\exists x \forall y$ GreaterEq($x, y)))$
"Every number has a number greater than or equal to it."

$\forall y \exists x$ GreaterEq($x, y)))$

Quantifier Order Can Matter

Domain of Discourse
$\{1,2,3,4\}$

Predicate Definitions
GreaterEq $(x, y)::=" x \geq y$ "

y
"There is a number greater than or equal to all numbers."

$$
\exists x \forall y \text { GreaterEq(x, (D)) }
$$

"Every number has a number greater than or equal to it."

	1		3	4
	T	F	F	F
2	T	T	F	F
3	T	T	T	E
4	T	T		T

$\forall y \exists x$ GreaterEq(x, y)))

The purple statement requires an entire row to be true. The red statement requires one entry in each column to be true.

Important: both include the case $x=y$
Different names does not imply different objects!

Quantification with Two Variables

	1234			
1	T	F	F	F
2	T	T	F	F
3	T	T	T	F
4	T	T	T	T

expression	when true	when false
$\begin{aligned} & \forall x \forall \text { y } P(x, y) \\ & =V_{y} \forall x P(x, y) \end{aligned}$	Every pair is true.	At least one pair is false.
$\begin{aligned} & \exists x \exists y P(x, y) \\ & \equiv \exists y \exists x P(x, y) \end{aligned}$	At least one pair is true.	All pairs are false.
$\forall \underset{\sim}{\neq \exists}$	We can find a specific y for each x. $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$	Some x doesn't have a corresponding y.
$\exists \mathrm{y} \forall \mathrm{x} P(\mathrm{x}, \mathrm{y})$	We can find ONE y that works no matter what x is. $\left(x_{1}, y\right),\left(x_{2}, y\right),\left(x_{3}, y\right)$	For any candidate y, there is an x that it doesn't work for.

Logical Inference

- So far we've considered:
- How to understand and express things using propositional and predicate logic
- How to compute using Boolean (propositional) logic
- How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us infer implied properties from ones that we know
- Equivalence is a small part of this

New Perspective

Rather than comparing A and B as columns, zoom in on just the rows where A is true:

\boldsymbol{p}	\boldsymbol{q}	\mathbf{A}	\mathbf{B}
T	T	T	
T	F	T	
F	T	F	
F	F	F	

New Perspective

Rather than comparing A and B as columns, zoom in on just the rows where A is true:

\boldsymbol{p}	\boldsymbol{q}	\mathbf{A}	\mathbf{B}
T	T	T	T
T	F	T	T
F	T	F	
F	F	F	

Given that A is true, we see that B is also true.

$$
A \Rightarrow B
$$

New Perspective

Rather than comparing A and B as columns, zoom in on just the rows where A is true:

\boldsymbol{p}	\boldsymbol{q}	\mathbf{A}	\mathbf{B}
T	T	T	T
T	F	T	T
F	T	F	$?$
F	F	F	$?$

When we zoom out, what have we proven?

New Perspective

Rather than comparing A and B as columns, zoom in on just the rows where B is true:

\boldsymbol{p}	\boldsymbol{q}	\mathbf{A}	\mathbf{B}	$\mathbf{A} \rightarrow \mathbf{B}$
T	T	T	T	T
T	F	T	T	T
F	T	F	$\mathrm{T} ?$	T
F	F	F	$\mathrm{~F} ?$	T

When we zoom out, what have we proven?

$$
(A \rightarrow B) \equiv T
$$

New Perspective

Equivalences
$A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

Inference
$A \Rightarrow B$ and $(A \rightarrow B) \equiv T$ are the same

Can do the inference by zooming in to the rows where A is true

Applications of Logical Inference

- Software Engineering
- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
- Automated reasoning
- Algorithm design and analysis
- e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
- Express desired outcome as set of constraints
- Automatically apply logic inference to derive solution

Proofs

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

An inference rule: Modus Ponens

- If A and $A \rightarrow B$ are both true, then B must be true
- Write this rule as $\frac{A ; A \rightarrow B}{\therefore B}$
- Given:
- If it is Friday, then you have a 311 class today.
- It is Friday.
- Therefore, by Modus Ponens:
- You have a 311 class today.

My First Proof!

Show that r follows from $p, p \rightarrow q$, and $q \rightarrow r$

Given
Given

$$
q \rightarrow r \quad \text { Given }
$$

M.P. for 1,2
M.P. for 4, 3

Modus Pones $\frac{A ; A \rightarrow B}{\therefore B}$

My First Proof!

Show that r follows from $p, p \rightarrow q$, and $q \rightarrow r$

1.	p	Given
2.	$p \rightarrow q$	Given
3.	$q \rightarrow r$	Given
4.	q	MP: 1, 2
5.	r	MP: 3,4

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$
$\left[\begin{array}{lll}\text { 1. } & p \rightarrow q & \text { Given } \\ \text { 2. } & \neg q & \text { Given } \\ \text { 3. } & \neg q \rightarrow \neg p & \text { Contrapositive: } 1 \\ \text { 4. } & \neg p & \text { MP: } 2,3\end{array}\right.$

Modus Ponens $\frac{A ; A \rightarrow B}{\therefore B}$

Inference Rules

Example (Modus Ponens):

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules

If I have nothing...

Example (Excluded Middle):
$\therefore A \vee \neg A$
$A \vee \neg A$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

$\therefore \mathrm{B}$

$\therefore \mathrm{A} \vee \mathrm{B}, \mathrm{B} \vee \mathrm{A}$

