Lecture 6: Predicate Logic, Logical Inference

We use *quantifiers* to talk about collections of objects.

∀x P(x)
P(x) is true for every x in the domain read as "for all x, P of x"

∃x P(x)

There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Last class: Predicate Logic to English (Natural)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x∃y Greater(y, x)

For every positive integer, there is a larger positive integer.

∃y ∀x Greater(y, x)

There is a positive integer that is larger than every other positive integer.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

Last class: English to Predicate Logic (Domain Restriction)

Domain of Discourse Mammals Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"All red cats like tofu"

 $\forall x ((\text{Red}(x) \land \text{Cat}(x)) \rightarrow \text{LikesTofu}(x))$

"Some red cats don't like tofu"

 $\exists y ((\text{Red}(y) \land \text{Cat}(y)) \land \neg \text{LikesTofu}(y))$

Last class: Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

What is the negation of (*)?

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Last class: De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

Intuition: \forall is like a giant AND over the domain \exists is like a giant OR over the domain

Last class: De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

These are equivalent but not equal

They have different English translations, e.g.:

There is no unicorn $\neg \exists x Unicorn(x)$

Every animal is not a unicorn $\forall x \neg$ Unicorn(x)

Last class: De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no integer at least as large as every other integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

"For every integer, there is a larger integer"

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"No even prime is greater than 2" $\neg \exists x (Even(x) \land Prime(x)) \land Greater(x, 2)) \\ \equiv \forall x \neg (Even(x) \land Prime(x)) \land Greater(x, 2)) \\ \equiv \forall x (\neg (Even(x) \land Prime(x)) \land \neg Greater(x, 2)) \\ \equiv \forall x ((Even(x) \land Prime(x)) \rightarrow \neg Greater(x, 2)) \\ \equiv \forall x ((Even(x) \land Prime(x)) \rightarrow LessEq(x, 2))$

"Every even prime is less than or equal to 2."

We just saw that

$$\neg \exists x (P(x) \land R(x)) \equiv \forall x (P(x) \rightarrow \neg R(x))$$

Can similarly show that

$$\neg \forall x (P(x) \rightarrow R(x)) \equiv \exists x (P(x) \land \neg R(x))$$

De Morgan's Laws respect domain restrictions! (It leaves them in place and only negates the other parts.)

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

Remain true when domain restrictions are used:

$$\neg \exists x (P(x) \land R(x)) \equiv \forall x (P(x) \rightarrow \neg R(x)) \neg \forall x (P(x) \rightarrow R(x)) \equiv \exists x (P(x) \land \neg R(x))$$

5

 $\exists x (P(x) \land Q(x))$ VS. $(\exists x P(x)) \land (\exists x Q(x))$

 $\exists x (P(x) \land Q(x)) VS. (\exists x P(x)) \land (\exists x Q(x))$

This one asserts P and Q of the same x.

This one asserts P and Q of potentially different x's.

Scope of Quantifiers

Example: NotLargest(x)
$$\equiv \exists y \text{ Greater } (y, x) = \exists z \text{ Greater } (z, x)$$

truth value:

doesn't depend on y or z "bound variables" does depend on x "free variable"

quantifiers only act on free variables of the formula they quantify $\forall x (\exists y (P(x,y) \rightarrow \forall x Q(y, x)))$

Quantifier "Style"

This isn't "wrong", it's just horrible style. Don't confuse your reader by using the same variable multiple times...there are a lot of letters... • Quantified variable names don't matter

$$\forall x \exists y P(x, y) \equiv \forall a \exists b P(a, b)$$

- Positions of quantifiers can <u>sometimes</u> change $\forall x (Q(x) \land \exists y P(x, y)) \equiv \forall x \exists y (Q(x) \land P(x, y))$
- But: order is important...

Quantifier Order Can Matter

Quantifier Order Can Matter

Quantifier Order Can Matter

The purple statement requires **an entire row** to be true. The red statement requires one entry in **each column** to be true.

Important: both include the case x = y

Different names does not imply different objects!

Quantification with Two Variables

7

1 2 3 4 F F 1 Т F 2 F F Т т 3 Т F т Т 4 т т Т т

expression	when true	when false
$\forall x \forall y P(x, y)$	Every pair is true.	At least one pair is false.
$\exists x \exists y P(x, y)$ = $\exists y \exists x P(x, y)$	At least one pair is true.	All pairs are false.
$\forall x \exists y P(x, y)$	We can find a specific y for each x. $(x_1, y_1), (x_2, y_2), (x_3, y_3)$	Some x doesn't have a corresponding y.
∃ y ∀ x P(x, y)	We can find ONE y that works no matter what x is. $(x_1, y), (x_2, y), (x_3, y)$	For any candidate y, there is an x that it doesn't work for.

- So far we've considered:
 - How to understand and express things using propositional and predicate logic
 - How to compute using Boolean (propositional) logic
 - How to show that different ways of expressing or computing them are equivalent to each other
- Logic also has methods that let us *infer* implied properties from ones that we know
 - Equivalence is a small part of this

Rather than comparing A and B as columns, zoom in on just the rows where A is true:

p	q	Α	В	
Т	Т	Т		
Т	F	Т		
F	Т	F		
F	F	F		

Rather than comparing A and B as columns, zoom in on just the rows where A is true:

Given that A is true, we see that B is also true.

 $A \Rightarrow B$

Rather than comparing A and B as columns, zoom in on just the rows where A is true:

When we zoom out, what have we proven?

Rather than comparing A and B as columns, zoom in on just the rows where B is true:

When we zoom out, what have we proven?

$$(\mathsf{A} \to \mathsf{B}) \equiv \mathbf{T}$$

New Perspective

Equivalences

 $A \equiv B$ and $(A \leftrightarrow B) \equiv T$ are the same

Inference $A \Rightarrow B$ and $(A \rightarrow B) \equiv T$ are the same

Can do the inference by zooming in to the rows where A is true

Applications of Logical Inference

• Software Engineering

- Express desired properties of program as set of logical constraints
- Use inference rules to show that program implies that those constraints are satisfied
- Artificial Intelligence
 - Automated reasoning
- Algorithm design and analysis
 - e.g., Correctness, Loop invariants.
- Logic Programming, e.g. Prolog
 - Express desired outcome as set of constraints
 - Automatically apply logic inference to derive solution

- Start with given facts (hypotheses)
- Use rules of inference to extend set of facts
- Result is proved when it is included in the set

- If A and $A \rightarrow B$ are both true, then B must be true
- Write this rule as $A : A \to B$ $\therefore B$
- Given:
 - If it is Friday, then you have a 311 class today.
 - It is Friday.
- Therefore, by Modus Ponens:
 - You have a 311 class today.

My First Proof!

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

Show that **r** follows from **p**, $\mathbf{p} \rightarrow \mathbf{q}$, and $\mathbf{q} \rightarrow \mathbf{r}$

1.	p	Given
2.	p ightarrow q	Given
3.	$q \rightarrow r$	Given
4.	\boldsymbol{q}	MP: 1, 2
5.	r	MP: 3, 4

Proofs can use equivalences too

Show that $\neg p$ follows from $p \rightarrow q$ and $\neg q$

Modus Ponens
$$A ; A \rightarrow B$$

 $\therefore B$

Inference Rules

Example (Modus Ponens):

If I have A and $A \rightarrow B$ both true, Then B must be true.

Axioms: Special inference rules

Example (Excluded Middle):

∴ A ∨¬A

 $A \lor \neg A$ must be true.

Simple Propositional Inference Rules

Two inference rules per binary connective, one to eliminate it and one to introduce it

