
CSE 311: Foundations of Computing

Lecture 6: Predicate Logic, Logical Inference



Last Class: Quantifiers

We use quantifiers to talk about collections of objects.

∀x P(x)

P(x) is true for every x in the domain

read as “for all x, P of x”

∃x P(x) 

There is an x in the domain for which P(x) is true

read as “there exists x, P of x”



Last class: Predicate Logic to English (Natural)

Even(x) ::= “x is even”

Odd(x) ::= “x is odd”

Prime(x) ::= “x is prime”

Greater(x, y) ::= “x > y”

Equal(x, y) ::= “x = y”

Sum(x, y, z) ::= “x + y = z”

Predicate Definitions

Positive Integers

Domain of Discourse

∀x ∃y Greater(y, x)

∃y ∀x Greater(y, x)

∀x ∃y (Greater(y, x) ∧ Prime(y))

Translate the following statements to English

For every positive integer, there is a larger positive integer.

There is a positive integer that is larger than every other positive integer.

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names



Last class: English to Predicate Logic (Domain Restriction)

“All red cats like tofu” 

“Some red cats don’t like tofu” 

Cat(x) ::= “x is a cat”

Red(x) ::= “x is red”

LikesTofu(x) ::= “x likes tofu”

Predicate Definitions

Mammals

Domain of Discourse

∀x ((Red(x) ∧ Cat(x)) → LikesTofu(x))

∃y ((Red(y) ∧ Cat(y)) ∧ ¬LikesTofu(y))



Last class: Negations of Quantifiers

PurpleFruit(x) ::= “x is a purple fruit”

Predicate Definitions

(*) ∀x PurpleFruit(x) (“All fruits are purple”)

What is the negation of (*)?

(a) “there exists a purple fruit”

(b) “there exists a non-purple fruit”

(c) “all fruits are not purple”

{plum, apple}

Domain of Discourse

(*)  PurpleFruit(plum) ∧ PurpleFruit(apple)

(a) PurpleFruit(plum) ∨ PurpleFruit(apple)

(b) ¬ PurpleFruit(plum) ∨ ¬ PurpleFruit(apple)

(c) ¬ PurpleFruit(plum) ∧ ¬ PurpleFruit(apple)



Last class: De Morgan’s Laws for Quantifiers

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)

Intuition: ∀ is like a giant AND over the domain

∃ is like a giant OR over the domain



Last class: De Morgan’s Laws for Quantifiers

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)

These are equivalent but not equal

They have different English translations, e.g.:

There is no unicorn

Every animal is not a unicorn

¬ ∃x Unicorn(x)

∀x ¬ Unicorn(x)



Last class: De Morgan’s Laws for Quantifiers

¬ ∃ x ∀ y  ( x ≥ y)

≡ ∀ x ¬ ∀y  ( x ≥ y)

≡ ∀ x  ∃ y ¬ ( x ≥ y)

≡ ∀ x  ∃ y  (y > x)

“There is no integer at least as large as every other integer”

“For every integer, there is a larger integer”

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)



De Morgan’s Laws for Quantifiers

¬ ∃x (Even(x) ∧ Prime(x) ∧ Greater(x, 2))

≡ ∀x ¬(Even(x) ∧ Prime(x) ∧ Greater(x, 2))

≡ ∀x (¬(Even(x) ∧ Prime(x)) ∨ ¬Greater(x, 2))

≡ ∀x ((Even(x) ∧ Prime(x)) → ¬Greater(x, 2))

≡ ∀x ((Even(x) ∧ Prime(x)) → LessEq(x, 2))

“No even prime is greater than 2”

“Every even prime is less than or equal to 2.”

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)



De Morgan’s Laws for Quantifiers

¬ ∃x (P(x) ∧ R(x)) ≡ ∀x (P(x) → ¬ R(x))

De Morgan’s Laws respect domain restrictions!

(It leaves them in place and only negates the other parts.)

¬∀x (P(x) → R(x)) ≡ ∃x (P(x) ∧ ¬ R(x))

We just saw that

Can similarly show that



De Morgan’s Laws for Quantifiers

¬∀x P(x) ≡ ∃x ¬ P(x)

¬ ∃x P(x) ≡ ∀x ¬ P(x)

¬ ∃x (P(x) ∧ R(x))  ≡ ∀x (P(x) → ¬ R(x))

¬∀x (P(x) → R(x)) ≡ ∃x (P(x) ∧ ¬ R(x))

Remain true when domain restrictions are used:



Scope of Quantifiers

∃x  (P(x) ∧ Q(x)) vs. (∃x P(x)) ∧ (∃x Q(x))



Scope of Quantifiers

∃x (P(x) ∧ Q(x)) vs. (∃x P(x)) ∧ (∃x Q(x))

This one asserts P 

and Q of the same x.

This one asserts P and Q 

of potentially different x’s.



Scope of Quantifiers

Example: NotLargest(x)  ≡ ∃ y Greater (y, x)                          

≡ ∃ z Greater (z, x)

truth value:

doesn’t depend on y or z “bound variables”

does depend on x “free variable”

quantifiers only act on free variables of the formula 

they quantify

∀ x (∃ y (P(x,y) → ∀ x Q(y, x)))



Quantifier “Style”

∀x(∃y (P(x,y) → ∀ x Q(y, x)))

This isn’t “wrong”, it’s just horrible style.

Don’t confuse your reader by using the same 

variable multiple times…there are a lot of letters…



Nested Quantifiers

• Quantified variable names don’t matter

∀x ∃y P(x, y) ≡ ∀a ∃b P(a, b)

• Positions of quantifiers can sometimes change

∀x (Q(x) ∧ ∃y P(x, y)) ≡ ∀x ∃y (Q(x) ∧ P(x, y))

• But:   order is important...



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”

Predicate Definitions

x

y

1   2   3   4

1

2

3

4

T F F F

T T F F

T T T F

T T T T

∃x ∀y GreaterEq(x, y)))

{1, 2, 3, 4}

Domain of Discourse



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”

Predicate Definitions

“Every number has a number greater than or equal to it.”

y

1   2   3   4

1

2

3

4

T F F F

T T F F

T T T F

T T T T

∃x ∀y GreaterEq(x, y)))

∀y ∃x GreaterEq(x, y)))

{1, 2, 3, 4}

Domain of Discourse

x



Quantifier Order Can Matter

“There is a number greater than or equal to all numbers.”

GreaterEq(x, y) ::= “x ≥ y”

Predicate Definitions

“Every number has a number greater than or equal to it.”

y

1   2   3   4

1

2

3

4

T F F F

T T F F

T T T F

T T T T

The purple statement requires an entire row to be true.

The red statement requires one entry in each column to be true.

∃x ∀y GreaterEq(x, y)))

∀y ∃x GreaterEq(x, y)))

Important: both include the case x = y

Different names does not imply different objects!

{1, 2, 3, 4}

Domain of Discourse

x



Quantification with Two Variables

expression when true when false

∀x ∀ y P(x, y) Every pair is true. At least one pair is false.

∃ x ∃ y P(x, y) At least one pair is true. All pairs are false.

∀ x ∃ y P(x, y) We can find a specific y for 

each x.

(x1, y1), (x2, y2), (x3, y3)

Some x doesn’t have a 

corresponding y.

∃ y ∀ x P(x, y) We can find ONE y that 

works no matter what x is.

(x1, y), (x2, y), (x3, y)

For any candidate y, there is 

an x that it doesn’t work for.

1   2   3   4

1

2

3

4

T F F F

T T F F

T T T F

T T T T



Logical Inference

• So far we’ve considered:

– How to understand and express things using 
propositional and predicate logic

– How to compute using Boolean (propositional) logic

– How to show that different ways of expressing or 
computing them are equivalent to each other

• Logic also has methods that let us infer implied 
properties from ones that we know

– Equivalence is a small part of this



New Perspective

Rather than comparing A and B as columns,

zoom in on just the rows where A is true:

p q A B

T T T

T F T

F T F

F F F



New Perspective

Rather than comparing A and B as columns,

zoom in on just the rows where A is true:

Given that A is true, we see that B is also true. 

p q A B

T T T T

T F T T

F T F

F F F

A ⇒ B



New Perspective

Rather than comparing A and B as columns,

zoom in on just the rows where A is true:

When we zoom out, what have we proven?

p q A B

T T T T

T F T T

F T F ?

F F F ?



New Perspective

Rather than comparing A and B as columns,

zoom in on just the rows where B is true:

When we zoom out, what have we proven?

p q A B A → B

T T T T T

T F T T T

F T F T T

F F F F T

(A → B) ≡ T



New Perspective

Equivalences

A ≡ B and (A ↔ B) ≡ T are the same

Inference

A ⇒ B and (A → B) ≡ T are the same

Can do the inference by  zooming in 

to the rows where A is true



Applications of Logical Inference

• Software Engineering

– Express desired properties of program as set of logical 
constraints

– Use inference rules to show that program implies that 
those constraints are satisfied

• Artificial Intelligence

– Automated reasoning 

• Algorithm design and analysis

– e.g.,  Correctness, Loop invariants.

• Logic Programming, e.g. Prolog

– Express desired outcome as set of constraints

– Automatically apply logic inference to derive solution



Proofs

• Start with given facts (hypotheses)

• Use rules of inference to extend set of facts

• Result is proved when it is included in the set



An inference rule:  Modus Ponens

• If A and A → B are both true, then B must be true

• Write this rule as

• Given: 

– If it is Friday, then you have a 311 class today. 

– It is Friday.

• Therefore, by Modus Ponens:  

– You have a 311 class today.

A ; A → B

∴ B



My First Proof!

Show that r follows from p, p → q, and q → r

1.  �  Given

2. � → � Given

3. � � � Given

4.

5.

Modus Ponens



My First Proof!

Show that r follows from p, p → q, and q → r

1.  � Given

2. � → � Given

3. � � � Given

4. � MP: 1, 2

5. � MP: 3, 4

Modus Ponens



1. � → � Given

2. �� Given

3. �� � �� Contrapositive: 1

4. �� MP: 2, 3

Proofs can use equivalences too

Show that ¬p follows from p → q and ¬q

Modus Ponens



Inference Rules

A  ;  B 

∴ C  ,  D

A  ;  A → B   

∴ B   

Requirements:

Conclusions:

If A is true and B is true ….

Then, C must 

be true

Then D must 

be true

Example (Modus Ponens):

If I have A and A → B both true,

Then B must be true.



Axioms:  Special inference rules

∴ C  ,  D

∴ A ∨¬A 

Requirements:

Conclusions:

If I have nothing…

Example (Excluded Middle):

A ∨¬A must be true.

Then D must 

be true
Then, C must 

be true



Simple Propositional Inference Rules

Two inference rules per binary connective,

one to eliminate it and one to introduce it

A ∧ B

∴ A, B

A ; B   

∴ A ∧ B 

A              x

∴ A ∨ B, B ∨ A

A ; A → B

∴ B

A  B  

∴ A → B

Not like other rules

Elim ∧ Intro  ∧

A ∨ B ; ¬A

∴ B
Elim ∨ Intro  ∨

Modus Ponens Direct Proof


