CSE 311: Foundations of Computing

Lecture 5: Canonical Forms, (Predicate Logic)

- Truth table is the unique signature of a 0/1 function
- The same truth table can have many gate realizations
 - We've seen this already
 - Depends on how good we are at Boolean simplification
- Canonical forms
 - Standard forms for a Boolean expression
 - We all produce the same expression

Last Time: Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

Add the minterms together

Sum-of-Products Canonical Form

Product term (or minterm)

- ANDed product of literals input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

А	В	С	minterms
0	0	0	A'B'C'
0	0	1	A′B′C
0	1	0	A'BC'
0	1	1	A'BC
1	0	0	AB'C'
1	0	1	AB'C
1	1	0	ABC'
1	1	1	ABC

F in canonical form: F(A, B, C) = A'B'C + A'BC + AB'C + ABC' + ABCcanonical form \neq minimal form F(A, B, C) = A'B'C + A'BC + AB'C + ABC + ABC' = (A'B' + A'B + AB' + AB)C + ABC' = ((A' + A)(B' + B))C + ABC' = C + ABC' = ABC' + C = AB + C

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Multiply the maxterms togetherEvaluates to 0 on this row; 1 everywhere else $F = (A + B + C)(A + B' + C)(A' + B + C) \cdot 1$

4

Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

Α	В	С	maxterms	F in canonical form:
0	0	0	A+B+C	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
0	0	1	A+B+C'	
0	1	0	A+B'+C	canonical form ≠ minimal form
0	1	1	A+B'+C'	F(A, B, C) = (A + B + C) (A + B' + C) (A' + B + C)
1	0	0	A'+B+C	= (A + B + C) (A + B' + C)
1	0	1	A'+B+C'	(A + B + C) (A' + B + C)
1	1	0	A'+B'+C	= (A + C) (B + C)
1	1	1	A'+B'+C'	
				transment that makes this
			CAT	an all all E too 7
				here an assignment that makes this

Predicate Logic

Propositional Logic

- Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives
- Predicate Logic
 - Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about

"All positive integers x, y, and z satisfy $x^3 + y^3 \neq z^3$."

Adds two key notions to propositional logic

- Predicates
- Quantifiers

Predicate

- A function that returns a truth value, e.g.,

Cat(x) ::= "x is a cat" Prime(x) ::= "x is prime" HasTaken(x, y) ::= "student x has taken course y" LessThan(x, y) ::= "x < y" Sum(x, y, z) ::= "x + y = z" GreaterThan5(x) ::= "x > 5" HasNChars(s, n) ::= "string s has length n"

Predicates can have varying numbers of arguments and input types.

For ease of use, we define one "type"/"domain" that we work over. This non-empty set of objects is called the "domain of discourse".

For each of the following, what might the domain be?
(1) "x is a cat", "x barks", "x ruined my couch" "mammals" or "sentient beings" or "cats and dogs" or ...
(2) "x is prime", "x = 0", "x < 0", "x is a power of two" "numbers" or "integers" or "integers greater than 5" or ...
(3) "student x has taken course y" "x is a pre-req for z"

"students and courses" or "university entities" or ...

We use quantifiers to talk about collections of objects.

✓ x P(x)
P(x) is true for every x in the domain
read as "for all x, P of x"

∃x P(x) There is an x in the domain for which P(x) is true read as "there exists x, P of x"

Statements with Quantifiers

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
	Sum(x, y, z) ::= "x + y = z"

Determine the truth values of each of these statements:

- $\exists x Even(x)$ T e.g. 2, 4, 6, ...
- F $\forall x \text{ Odd}(x)$ F

Т

F

T.

 $\forall x (Even(x) \lor Odd(x))$

 $\exists x (Even(x) \land Odd(x))$

 $\forall x \text{ Greater}(x+1, x)$

 $\exists x (Even(x) \land Prime(x)) \top$

- every integer is either even or odd
- no integer is both even and odd
- adding 1 makes a bigger number
 - Even(2) is true and Prime(2) is true

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers Predicate DefinitionsEven(x) ::= "x is even"Greater(x, y) ::= "x > y"Odd(x) ::= "x is odd"Equal(x, y) ::= "x = y"Prime(x) ::= "x is prime"Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

 $\forall x \exists y \text{ Greater}(y, x) \qquad \text{For all politive integers} \times, \text{ then is a politive integer } \\ \text{For every positive integer } x, \text{ there is a positive integer } y, \text{ such that } y > x. \\ \exists y \forall x \text{ Greater}(y, x) \\ \text{There is a positive integer } y \text{ such that, for every pos. int. } x, \text{ we have } y > x. \\ \forall x \exists y (\text{Greater}(y, x) \land \text{Prime}(y)) \\ \text{For every positive integer } x, \text{ there is a pos. int. } y \text{ such that } y > x \text{ and } y \text{ is prime.} \\ \forall x (\text{Prime}(x) \rightarrow (\text{Equal}(x, 2) \lor \text{Odd}(x))) \text{ for every positive integer } x, \text{ if } x \text{ is prime.} \\ \text{For each positive integer } x, \text{ if } x \text{ is prime, then } x = 2 \text{ or } x \text{ is odd.} \\ \exists x \exists y (\text{Sum}(x, 2, y) \land \text{Prime}(x) \land \text{Prime}(y)) \end{cases}$

There exist positive integers x and y such that x + 2 = y and x and y are prime.

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

For every positive integer x, there is a positive integer y, such that y > x.

∃y ∀x Greater(y, x)

There is a positive integer y such that, for every pos. int. x, we have y > x.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer x, there is a pos. int. y such that y > x and y is prime.

Statements with Quantifiers (Natural Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

∀x ∃y Greater(y, x)

For every positive integer, there is some larger positive integer.

 $\exists y \forall x \text{ Greater}(y, x)$

There is a positive integer that is larger than every other positive integer.

 $\forall x \exists y (Greater(y, x) \land Prime(y))$

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

English to Predicate Logic

Predicate Definitions Cat(x) ::= "x is a cat" **Domain of Discourse Mammals** Red(x) ::= "x is red"LikesTofu(x) ::= "x likes tofu" "All red cats like tofu" $\forall x ((Ped(x) \land (af(x))))$ $\forall x ((\text{Red}(x) \land \text{Cat}(x)) \rightarrow \text{LikesTofu}(x))$ "Some red cats don't like tofu" $\exists y ((\text{Red}(y) \land \text{Cat}(y)) \land \neg \text{LikesTofu}(y))$

English to Predicate Logic

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= "x > y"
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

For each positive integer x, if x is prime, then x = 2 or x is odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist positive integers x and y such that x + 2 = y and x and y are prime.

Statements with Quantifiers (Literal Translations)

Domain of Discourse Positive Integers

Predicate Definitions	
Even(x) ::= "x is even"	Greater(x, y) ::= " $x > y$ "
Odd(x) ::= "x is odd"	Equal(x, y) ::= " $x = y$ "
Prime(x) ::= "x is prime"	Sum(x, y, z) ::= "x + y = z"

Translate the following statements to English

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

Every prime number is either 2 or odd.

 $\exists x \exists y (Sum(x, 2, y) \land Prime(x) \land Prime(y))$

There exist prime numbers that differ by two.

Spot the domain restriction patterns

English to Predicate Logic

Domain of Discourse Mammals Predicate Definitions

Cat(x) ::= "x is a cat" Red(x) ::= "x is red" LikesTofu(x) ::= "x likes tofu"

"Some red cats don't like tofu"

"A red cat doesn't like tofu" "A" means "there exists".

Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more <u>natural</u> if we

1. Notice "domain restriction" patterns

 $\forall x (Prime(x) \rightarrow (Equal(x, 2) \lor Odd(x)))$

Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names

 $\forall x \exists y \text{ Greater}(y, x)$

For every positive integer, there is some larger positive integer.

3. Can sometimes drop "all" or "there is"

 $\neg \exists x (Even(x) \land Prime(x) \land Greater(x, 2))$

No even prime is greater than 2.

Implicit quantifiers in English are often confusing

<u>Three people</u> that are all friends can form a raiding party \forall

<u>Three people</u> I know are all friends with Mark Zuckerberg ∃

Formal logic removes this ambiguity

- quantifiers can always be specified
- unquantified variables that are not known constants (e.g, π) are implicitly \forall -quantified

Negations of Quantifiers

Try your intuition! Which one seems right?

Negations of Quantifiers

Predicate Definitions

PurpleFruit(x) ::= "x is a purple fruit"

(*) $\forall x PurpleFruit(x)$ ("All fruits are purple")

- (a) "there exists a purple fruit"
- (b) "there exists a non-purple fruit"
- (c) "all fruits are not purple"

Domain of Discourse {plum, apple}

- (a) PurpleFruit(plum) ∨ PurpleFruit(apple)
- (b) ¬ PurpleFruit(plum) ∨ ¬ PurpleFruit(apple)

De Myn

(c) ¬ PurpleFruit(plum) ∧ ¬ PurpleFruit(apple)

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

De Morgan's Laws for Quantifiers

$$\neg \forall x P(x) \equiv \exists x \neg P(x) \\ \neg \exists x P(x) \equiv \forall x \neg P(x)$$

"There is no integer larger than every other integer"

$$\neg \exists x \forall y (x \ge y)$$

$$\equiv \forall x \neg \forall y (x \ge y)$$

$$\equiv \forall x \exists y \neg (x \ge y)$$

$$\equiv \forall x \exists y (y > x)$$

"For every integer, there is a larger integer"