CSE 311: Foundations of Computing

Lecture 5: Canonical Forms, Predicate Logic

Last class: Canonical Forms

- Truth table is the unique signature of a $0 / 1$ function
- The same truth table can have many gate realizations
- We've seen this already
- Depends on how good we are at Boolean simplification
- Canonical forms
- Standard forms for a Boolean expression
- We all produce the same expression

Last Time: Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

Add the minterms together

$$
F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C^{\prime}
$$

Evaluates to 1 on this row; 0 everywhere else

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(1)
(2)

Convert to
Read T rows off
oolean Algebra truth table
$A^{\prime} B^{\prime} C$

Sum-of-Products Canonical Form

Product term (or minterm)

- ANDed product of literals - input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

A	B	C	minterms
0	0	0	$A^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$
0	0	1	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$
0	1	0	$\mathrm{~A}^{\prime} \mathrm{BC}^{\prime}$
0	1	1	$\mathrm{~A}^{\prime} \mathrm{BC}$
1	0	0	$A B^{\prime} C^{\prime}$
1	0	1	$A B^{\prime} \mathrm{C}$
1	1	0	$A B C^{\prime}$
1	1	1	ABC

$$
\begin{aligned}
\text { Fin canonical form: } \\
\begin{aligned}
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C \\
\text { canonical form } & \neq \text { minimal form } \\
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime} \\
& =\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime} \\
& =\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime} \\
& \equiv C+A B C^{\prime} \\
& =A B C^{\prime}+C \\
& =A B+C
\end{aligned}
\end{aligned}
$$

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion
(4)

Multiply the maxterms together
Evaluates to 0 on this row; 1 everywhere else $F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \cdot 1$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals - input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

A	B	C	maxterms
0	0	0	$A+B+C$
0	0	1	$A+B+C^{\prime}$
0	1	0	$A+B^{\prime}+C$
0	1	1	$A+B^{\prime}+C^{\prime}$
1	0	0	$A^{\prime}+B+C$
1	0	1	$A^{\prime}+B+C^{\prime}$
1	1	0	$A^{\prime}+B^{\prime}+C$
1	1	1	$A^{\prime}+B^{\prime}+C^{\prime}$

F in canonical form:

$$
F(A, B, C)=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
$$

canonical form \neq minimal form
$F(A, B, C)=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)$ $=(A+B+C)\left(A+B^{\prime}+C\right)$ $(A+B+C)\left(A^{\prime}+B+C\right)$
$=(A+C)(B+C)$

Predicate Logic

Predicate Logic

- Propositional Logic
- Allows us to analyze complex propositions in terms of their simpler constituent parts (a.k.a. atomic propositions) joined by connectives
- Predicate Logic
- Lets us analyze them at a deeper level by expressing how those propositions depend on the objects they are talking about
"All positive integers x, y, and z satisfy $x^{3}+y^{3} \neq z^{3}$."

Predicate Logic

Adds two key notions to propositional logic

- Predicates
- Quantifiers

Predicates

Predicate

- A function that returns a truth value, e.g.,

Cat(x) ::= " x is a cat"
Prime $(x)::=$ " x is prime"
HasTaken $(x, y)::=$ "student x has taken course y "
LessThan $(x, y)::=" x<y$ "
Sum $(x, y, z)::=" x+y=z "$
GreaterThan5(x) ::= "x > 5"
HasNChars(s, n) ::= "string s has length $n "$
Predicates can have varying numbers of arguments and input types.

Domain of Discourse

For ease of use, we define one "type"/"domain" that we work over. This non-empty set of objects is called the "domain of discourse".

For each of the following, what might the domain be?
(1) " x is a cat", " x barks", " x ruined my couch"
"mammals" or "sentient beings" or "cats and dogs" or ...
(2) " x is prime", " $x=0 ", " x<0 ", " x$ is a power of two"
"numbers" or "integers" or "integers greater than 5" or ...
(3) "student x has taken course $y "$ " x is a pre-req for z "
"students and courses" or "university entities" or ...

Quantifiers

We use quantifiers to talk about collections of objects.
$\forall x P(x)$
$P(x)$ is true for every x in the domain read as "for all x, P of x "
$\exists x P(x)$
There is an x in the domain for which $P(x)$ is true read as "there exists x, P of x "

Statements with Quantifiers

Domain of Discourse
Positive Integers

Predicate Definitions	
Even $(x)::=$ " x is even"	Greater $(x, y)::=$ " $x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Determine the truth values of each of these statements:
$\exists x \operatorname{Even}(x) \quad T \quad T \quad$ e.g.2,4, 6, ...
$\forall x \operatorname{Odd}(x) \quad F \quad F \quad$ e.g. $2,4,6, \ldots$
$\forall x(\operatorname{Even}(x) \vee \operatorname{Odd}(x)) \quad T \quad$ every integer is either even or odd
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Odd}(x)) \quad F \quad$ no integer is both even and odd
$\forall x$ Greater $(x+1, x) \quad T \quad$ adding 1 makes a bigger number
$\exists x(\operatorname{Even}(x) \wedge \operatorname{Prime}(x)) \quad$ Even(2) is true and Prime(2) is true

Statements with Quantifiers (Literal Translations)

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	$\operatorname{Greater}(x, y)::=$ " $x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=$ " $x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Translate the following statements to English

$\forall x \exists y \operatorname{Greater}(y, x) \quad$ For all positive mentepers x, then is a politurentyry y
For every positive integer x, there is a positive integer y, such that $y>x$. $\exists y \forall x$ Greater (y, x)

There is a positive integer y such that, for every pos. int. x, we have $y>x$.
not $\forall x \neq \exists y_{\text {, }}(\operatorname{Greater}(y, x) \wedge \operatorname{Prime}(y))$
For every positive integer x, there is a pos. int. y such that $y>x$ and y is prime.

$\exists x \exists y\left(\operatorname{Sum}(x, 2, y)^{\prime} \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y)\right)$
There exist positive integers x and y such that $\mathrm{x}+2 \mathrm{y}$ and x and y are prime.

Statements with Quantifiers (Literal Translations)

Domain of Discourse
Positive Integers

Predicate Definitions	
Even $(x)::=$ " x is even"	$\operatorname{Greater}(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
For every positive integer x, there is a positive integer y, such that $y>x$. $\exists y \forall x$ Greater (y, x)

There is a positive integer y such that, for every pos. int. x , we have $\mathrm{y}>\mathrm{x}$. $\forall x \exists y(\operatorname{Greater}(\mathrm{y}, \mathrm{x}) \wedge \operatorname{Prime}(\mathrm{y}))$

For every positive integer x , there is a pos. int. y such that $\mathrm{y}>\mathrm{x}$ and y is prime.

Statements with Quantifiers (Natural Translations)

Domain of Discourse
Positive Integers

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	$\operatorname{Greater}(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Translate the following statements to English
$\forall x \exists y$ Greater (y, x)
For every positive integer, there is some larger positive integer.
$\exists y \forall x$ Greater (y, x)
There is a positive integer that is larger than every other positive integer.
$\forall x \exists y$ (Greater $(\mathrm{y}, \mathrm{x}) \wedge$ Prime $(\mathrm{y}))$
For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

English to Predicate Logic

Domain of Discourse
Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu $(x)::=$ " x likes tofu"

"All red cats like tofu" $\forall x \quad((\operatorname{Red}(x) \wedge(a f(x))$
$\forall x((\operatorname{Red}(\mathrm{x}) \wedge \operatorname{Cat}(\mathrm{x})) \rightarrow$ LikesTofu(x))
\uparrow
"Some red cats don't like tofu"
$\exists y((\operatorname{Red}(y) \wedge \operatorname{Cat}(y)) \wedge \neg$ LikesTofu(y))

English to Predicate Logic

Domain of Discourse
Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=" x$ is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu $(x)::=$ " x likes tofu"

"Some red cats don't like tofu" When restricting to a smaller domain in a "for all" we use implication.

When restricting to a smaller

"Some" means "there exists".

Statements with Quantifiers (Literal Translations)

Domain of Discourse
Positive Integers

Predicate Definitions	
Even $(x)::=$ " x is even"	$\operatorname{Greater}(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=$ " x is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Translate the following statements to English
$\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$
For each positive integer x, if x is prime, then $x=2$ or x is odd.
$\exists x \exists y(\operatorname{Sum}(x, 2, y) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$
There exist positive integers x and y such that $x+2=y$ and x and y are prime.

Statements with Quantifiers (Literal Translations)

Domain of Discourse
Positive Integers

Predicate Definitions	
$\operatorname{Even}(x)::=$ " x is even"	$\operatorname{Greater}(x, y)::=" x>y "$
$\operatorname{Odd}(x)::=" x$ is odd"	Equal $(x, y)::=" x=y "$
$\operatorname{Prime}(x)::=$ " x is prime"	$\operatorname{Sum}(x, y, z)::=" x+y=z "$

Translate the following statements to English
$\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$
Every prime number is either 2 or odd.
$\exists x \exists y(\operatorname{Sum}(x, 2, y) \wedge \operatorname{Prime}(x) \wedge \operatorname{Prime}(y))$
There exist prime numbers that differ by two.

Spot the domain restriction patterns

English to Predicate Logic

Domain of Discourse

Mammals

Predicate Definitions
$\operatorname{Cat}(x)::=$ " x is a cat"
$\operatorname{Red}(x)::=$ " x is red"
LikesTofu($x)::=$ " x likes tofu"

"All Red cats like tofu"
"Red cats like tofu"
When there's no leading
quantification, it means "for all".
"Some red cats don't like tofu"
"A red cat doesn't like tofu"

"A" means "there exists".

Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more natural if we

1. Notice "domain restriction" patterns
$\forall x(\operatorname{Prime}(x) \rightarrow($ Equal $(x, 2) \vee \operatorname{Odd}(x)))$
Every prime number is either 2 or odd.
2. Avoid introducing unnecessary variable names
$\forall x \exists y$ Greater (y, x)
For every positive integer, there is some larger positive integer.
3. Can sometimes drop "all" or "there is"
$\neg \exists \mathrm{x}(\operatorname{Even}(\mathrm{x}) \wedge \operatorname{Prime}(\mathrm{x}) \wedge$ Greater $(\mathrm{x}, 2))$
No even prime is greater than 2.

More English Ambiguity

Implicit quantifiers in English are often confusing

Three people that are all friends can form a raiding party

Three people I know are all friends with Mark Zuckerberg \exists

Formal logic removes this ambiguity

- quantifiers can always be specified
- unquantified variables that are not known constants (e.g, п) are implicitly \forall-quantified

Negations of Quantifiers

Try your intuition! Which one seems right?

Negations of Quantifiers

Predicate Definitions
PurpleFruit $(x)::=$ " x is a purple fruit"

(*) $\forall x$ PurpleFruit(x) ("All fruits are purple")
What is the negation of (*)?
(a) "there exists a purple fruit"
(b) "there exists a non-purple fruit"
(c) "all fruits are not purple"

Domain of Discourse

\{plum, apple\}
7 (*)PurpleFruit(plum) \wedge PurpleFruit(apple)
(a) PurpleFruit(plum) v PurpleFruit(apple) (b) \neg PurpleFruitf(plum) $\vee \neg$ PurpleFruit(apple)
(c) \neg PurpleFruit(plum) $\wedge \neg$ PurpleFruit(apple)

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{x}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{x}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \hline
\end{aligned}
$$

De Morgan's Laws for Quantifiers

$$
\begin{aligned}
& \neg \forall \mathrm{xP}(\mathrm{x}) \equiv \exists \mathrm{x} \neg \mathrm{P}(\mathrm{x}) \\
& \neg \exists \mathrm{xP}(\mathrm{x}) \equiv \forall \mathrm{x} \neg \mathrm{P}(\mathrm{x})
\end{aligned}
$$

"There is no integer larger than every other integer"

$$
\begin{aligned}
& \neg \exists x \forall y(x \geq y) \\
\equiv & \forall x \neg \forall y(x \geq y) \\
\equiv & \forall x \exists y \neg(x \geq y) \\
\equiv & \forall x \exists y \quad(y>x)
\end{aligned}
$$

"For every integer, there is a larger integer"

