CSE 311.: Foundations of Computing

Lecture 5: Predicate Logic

THREE LOGICIANS WALK INTO A BAR...

DOES EVERYONE u L
WANT BEER? I | L
e v

8
AL

v]l T -

Last class: Canonical Forms

* Truth table is the unique sighature of a O/1 function

* The same truth table can have many gate realizations

— We've seen this already
— Depends on how good we are at Boolean simplification

e Canonical forms
— Standard forms for a Boolean expression

— We all produce the same expression

Last Time: Sum-of-Products Canonical Form

 AKA Disjunctive Normal Form (DNF)
* AKA Minterm Expansion ©

Add the minterms together
F= ABC + ABC + AB'C + ABC' + ABC'

Evaluates to 1 on this row; O everywhere else

Read T rows off
truth table

001

Canvert to
Boolean Algebra

> 01] =P A'BC

7
il] ()] = AB’C
b]] () ey ABC’
pe—]]] —) ABC

Rlr|Rr|,r|lo|lo|lo|o]| P>
Rr|l—r|lO|]O|lrR,|—R|lO|]OI A

R |lO|lrR|O|lR,|O|lFRLR]|O]I O

R|lr|lRr|lo|lr|lolr|[o] =

Sum-of-Products Canonical Form

Product term (or minterm)
— ANDed product of literals - input combination for which output is true
— each variable appears exactly once, true or inverted (but not both)

A B C | minterms _ _
BRI F in canonical form:
0 0 0 |ABC - , , ,
0 0 1 | ABC F(A, B,C) = ABC+ ABC + AB'C + ABC' + ABC
0 1 0 |ABC | N
0 1 1 | ABC canonical form = minimal form
1 0 0 |ABC F(A, B,C) = ABC + ABC + AB'C + ABC + ABC’
1 0 1 | ABC = (AB’ + AB + AB" + AB)C + ABC’
1 1 0 |ABC = ((A" + A)(B' + B))C + ABC’
1 1 1 |ABC = C+ ABC
= ABC'+ C

= AB + C

Product-of-Sums Canonical Form

 AKA Conjunctive Normal Form (CNF)
* AKA Maxterm Expansion (2

=5 my the maxterms togem
Evaluates to O on this row; 1 everywhere elsd r_ (A + B+ C)NA+B + C) (A +B + C
(I (K +B+C)

P

Rlr|Rr|,r|lo|lo|lo|o]| P>

Rr|l—r|lO|]O|lrR,|—R|lO|]OI A

ROl |O|lRr|O|lRL,|O]O

R|lRr|lRr|lOo|lr|lo|lrr|o] =

(

Read F rows off Negate all
éﬁuh table bits
000 —> 111

rR(
T>010—>101—>A+B’+C F
e 1)0 e)]] A’ + B + C
t

Product-of-Sums Canonical Form

Sum term (or maxterm)

— ORed sum of literals - input combination for which output is false

— each variable appears exactly once, true or inverted (but not both)

A B C | maxterms
0O 0 O |A+B+C

0O 0 1 |A+B+C

0 1 0 |A+B+C

O 1 1 |A+B+C
1 0 0 |A+B+C

1 0 1 |[A+B+C

1 1 0 | A+B+C

1 1 1

A'+B'+C’

F in canonical form:
F(A,B,C) =(A+B+C)(A+B'"+C)(A+B+0C)

canonical form = minimal form
F(A,B,C) =(A+B+C)(A+B'"+C)(A+B+0C)
=(A+B+C)(A+B + (O
(A+B+C)(A+B+C)
=(A+C)(B+0O

Predicate Logic

Predicate Logic

* Propositional Logic

— Allows us to analyze complex propositions in
terms of their simpler constituent parts (a.k.a.
atomic propositions) joined by connectives

* Predicate Logic
— Lets us analyze them at a deeper level by
expressing how those propositions depend on
the objects they are talking about
a———

7

“All positive integers x, y, and z satisfy x> + y3 # z5.

Predicate Logic

Adds two key notions to propositional logic
— Predicates

— Quantifiers

Predicates

Predicate
— A function that returns a truth value, e.g.,

Cat(x) ::= “xis a cat”

Prime(x) ::= “x is prime”

HasTaken(x, y) ::= “student x has taken course y”
LessThan(x, y) ::= “x<vy”

Sum(x, vy, z) = “x+y=2"

GreaterThan5(x) ::= “x > 5”

HasNChars(s, n) ::= “string s has length n”

Predicates can have varying numbers of arguments
and input types.

Domain of Discourse

For ease of use, we define one “type”/“domain” that we
work over. This non-empty set of objects is called the

“domain of discourse”.

For each of the following, what might the domain be?

(1) “x is a cat”, “x barks”, “x ruined my couch”

/
“mammals” or “sentient beings” or “cats and dogs” or ...

(2) “x is prime”, “x =07, “x< 07, “x is a power of two”
7 — -

“numbers” or “integers” or “integers greater than 5” or ...

(3) “student x has taken course y” “x is a pre-req for z’

7

“students and courses” or “university entities” or ...

Quantifiers

We use quantifiers to talk about collections of objects.

Vx P(x) [@)

A P(x) is true for every x in the domain QUANTIFIEE

read as “for all x, P of x”
-_—

3x P(x)

~7 There is an x in the domain for which P(x) is true

read as “there exists x, P of x”
Dt

Statements with Quantifiers

Predicate Definitions
Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::@'

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y =2")

Determine the truth values of each of these statements:

S e

~

dx Even(x) oA \/ T eg2,4,6,..
vxoddx) L. X F eg24,6,..
Vx (Even(x) v Odd(x)) /TI'_ every integer is either even or odd

dx (Even(x) A Odd(x)) ((F no integer is both even and odd
T

Vx Greater(x+1, x) T adding 1 makes a bigger number

3x (Even(x) A Prime(x)) T %&&1(2) is true and Prime(2) is true

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y =2")

Translate the following statements to English

_ Dos\'\/ﬁ\le 1%,

Vx Ay Greater(y, x) VYol 4\l ¢ , 03t 0Kk \\) O WO ek
—=Tor every positive integer x, there Is a posiﬂvé@tﬁg]é@,go&&ucfkmal\y XX.
Jy Vx Greater(y, x) fq o aciike Y, Sutn Lot for e\ « Y 3%/*

There is a positive integer y such that, for every pos. int. x, we have y > x.
Vx 3y (Greater(y, x) A Prime(y))
For every positive integer X, there is a pos. int. y such thaty > x and y is prime.

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

For each positive integer x, if x is prime, then x =2 or x is odd.

dx dy (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y =2")

Translate the following statements to English

Vx dy Greater(y, x)

For every positive integer X, there is a positive integer y, such thaty > x.
dy Vx Greater(y, x)

There is a positive integer y such that, for every pos. int. x, we have y > x.
Vx 3y (Greater(y, x) A Prime(y))

For every positive integer X, there is a pos. int. y such thaty > x and y is prime.

Statements with Quantifiers (Natural Translations)

p
Predicate Definitions
Domain of Discourse Even(x) ::= “x is even” Greater(x, y) ::= “x>vy”
| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y =2")

Translate the following statements to English

Vx dy Greater(y, x) 0
For every positive integer, there is som@ositive integer. (:GM\U\ Vd/\
= = A ONV\
dy Vx Greater(y, x) Q

There is a positive integer that is larger than every other positive integer.

Vx dy (Greater(y, x) A Prime(y))

For every positive integer, there is a prime that is larger.

Sound more natural without introducing variable names

English to Predicate Logic

V Predicate Definitions
E)omain of Discourse Cat(x) ::= “x is a cat”

Mammals) Red(x) ::= “x is red”
_\LikesTofu(x) ::= “x likes tofu”)

“All red cats like tofu”

i (R ekt Likaedrltaly

“‘Some red cats don’t like tofu”

ﬂyﬁﬂ%ﬁ@@@&x@fk%ﬁf & -

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “x is a cat”

Mammals) Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

When putting two predicates together like this, 4&‘
‘ use an “and”. AO W L S‘Q v

When restricting to a smaller
domain in a “for all” we use

“All Red cats like tofu” <

implication.
—d4 When restricting to a smaller
“Some red cats don’t like tofu” €— domain in an “exists” we use
and.

“Some” means “there exists”.

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y =2")

Translate the following statements to English

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

For each positive integer x, if x is prime, then x =2 or x is odd.
dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist positive integers x and y such that x + 2 =y and x and y are prime.

Statements with Quantifiers (Literal Translations)

Predicate Definitions

Domain of Discourse Even(x) ::= “xis even” Greater(x, y) ::= “x>y”

| Positive Integers Odd(x) ::= “x is odd” Equal(x, y) ::= “x = y”
\Prime(x) ::= “x is prime” Sum(x, y, z) ::= “x+y =2")

Translate the following statements to English

Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.
dx Ay (Sum(x, 2, y) A Prime(x) A Prime(y))

There exist prime numbers that differ by two.

Spot the domain restriction patterns

English to Predicate Logic

Predicate Definitions
Domain of Discourse Cat(x) ::= “x is a cat”

Mammals) Red(x) ::= “x is red”
\LikesTofu(x) ::= “x likes tofu”

“All Red cats like tofu”
“Red cats like tofu”

L When there’s no leading
quantification, it means “for all”.

“Some red cats don’t like tofu”
“A red cat doesn’t like tofu”

l — “A” means “there exists”.

Statements with Quantifiers (Natural Translations)

Translations often (not always) sound more natural if we

/1. Notice “domain restriction” patterns
Vx (Prime(x) — (Equal(x, 2) v Odd(x)))

Every prime number is either 2 or odd.

2. Avoid introducing unnecessary variable names
Vx dy Greater(y, x)

For every positive integer, there is some larger positive integer.

3. Can sometimes drop “all” or “there is”

— dx (Even(x) A Prime(x) A Greater(x, 2))

T a-— == >

No even prime is greater than 2.

— _—

More English Ambiguity

Implicit quantifiers in English are often confusing

;;I'hree people)that are all friends can form a raiding party V
>’

=

7
/ghree people I|lknow are all friends with Mark Zuckerberg 3

Formal logic removes this ambiguity
— quantifiers can always be specified

— unquantified variables that are not known constants (e.g, m)
are implicitly V-quantified

Negations of Quantifiers

Predicate Definitions
| PurpleFruit(x) ::= “xis a purple fruit”

(*) Vx PurpleFruit(x) (“All fruits are purple”)

~ What is the negation of (*)?
(a) “there exists a purple fruit”
—=b) “there exists a non-purple fruit”
(c) “all fruits are not purple”

Try your intuition! Which one seems right?

Negations of Quantifiers

NV 5
O d\l\NM\(\ g %{ Predicate Definitions

| PurpleFruit(x) ::= “xis a purple fruit”

(*) @ PurpleFruit(x) (“All fruits are purple”)
What is the negation of (*)?

(a) “there exists a purple fruit”
(b) QE@S a non-purple fruit”
(c)° Fuits are not purple”

Domain of Discourse
{plum, apple}

(*) PurpleFruit(plum) A PurpleFruit(apple)

u(rpIeFrwt(pIum)qu rpleFruit(apple)

rMe ru\JpIurrr; diit(apple)
PurpIeFr%lum /\—.Purp Fruit(apple)

?LX - PE(x)

De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

’&PNQBZ 2P v &

De Morgan’s Laws for Quantifiers

— VX P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“There is no integer larger than every other integer”

—dxVy (x2y)
= Vx=aVy (x2y)
Vx dy—=(x2y)
Vx 3y (y>x)

“For every integer, there is a larger integer”

De Morgan’s Laws for Quantifiers

—Vx P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

These are equivalent but not equal
They have different English translations, e.g.:

There is no unicorn — dx Unicorn(x)

Every animal is not a unicorn V¥x — Unicorn(x)

De Morgan’s Laws for Quantifiers P->az —Fvi

—Vx P(x) = dx — P(x)
— dx P(x) = Vx — P(x)

“No even prime is greater than 2”

— dx (Even(x) A Prime(x) A Greater(x, 2))

Vx —(Even(x) A Prime(x)B/\ Greater(x, 2))
Vx (—(Even(x) A Prime(x)) v —Greater(x, 2))
VX ((Even(x) A Prime(x)) — —Greater(x, 2))
Vx ((Even(x) A Prime(x)) — LessEq(x, 2))

“Every even prime is less than or equal to 2.”

De Morgan’s Laws for Quantifiers

We just saw that

— 3x (P(x) A R(x)) = M(X) — 1 R{x)),

Can similarly show that

—Vx (P(x) = R(x)) = dx (P(x) A = R(x))

De Morgan’s Laws respect domain restrictions!
(It leaves them in place and only negates the other parts.)

