CSE 311: Foundations of Computing

Lecture 4: Boolean Algebra, Circuits, Canonical Forms

Last Time: Boolean Algebra

- Usual notation used in circuit design
- Boolean algebra
- a set of elements B containing $\{0,1\}$
- binary operations \{+, •\}
- and a unary operation \{ ' \}
- such that the following axioms hold:

For any a, b, c in B:

1. closure:
2. commutativity:
3. associativity:
4. distributivity:
5. identity:
6. complementarity:
7. null:
8. idempotency:
9. involution:

$$
\begin{aligned}
& a+b \text { is in } B \\
& a+b=b+a \\
& a+(b+c)=(a+b)+c \\
& a+(b-c)=(a+b) \cdot(a+c) \\
& a+0=a \\
& a+a^{\prime}=1 \\
& a+1=1 \\
& a+a=a \\
& \left(a^{\prime}\right)^{\prime}=a
\end{aligned}
$$

$$
\begin{aligned}
& a \cdot b \text { is in } B \\
& a \cdot b=b \cdot a \\
& a \cdot(b \cdot c)=(a \cdot b) \cdot c \\
& a \cdot(b+c)=(a \cdot b)+(a \cdot c) \\
& a \cdot 1=a \\
& a \cdot a=0 \\
& a \cdot 0=0 \\
& a \cdot a=a
\end{aligned}
$$

Warm-up Exercise

- Create a Boolean Algebra expression for C below in terms of the variables a and b

\boldsymbol{a}	\boldsymbol{b}	$\boldsymbol{C}(\boldsymbol{a}, \boldsymbol{b})$
1	1	0
1	0	1
0	1	1
0	0	0

$$
a b^{\prime}+a^{\prime} b
$$

Warm-up Exercise

- Create a Boolean Algebra expression for "c" below in terms of the variables a and b

$$
c=a b^{\prime}+a^{\prime} b
$$

- Draw this as a circuit (using AND, OR, NOT)

Last Time: Combinational Logic

Encoding:

- Binary number for weekday
(Binary encoding)
- One bit for each possible output

Last Time: Truth Table to Logic

Last Time: Truth Table to Logic

$$
\begin{aligned}
& c_{0}=d_{2} \cdot d_{1} \cdot d_{0} \cdot L^{\prime}+d_{2} \cdot d_{1} \cdot d_{0}{ }^{\prime}+d_{2} \cdot d_{1} \cdot d_{0} \\
& c_{1}=d_{2}{ }^{\prime} \cdot d_{1}{ }^{\prime} \cdot d_{0}{ }^{\prime} \cdot L^{\prime}+d_{2}{ }^{\prime} \cdot d_{1} \cdot d_{0} \cdot L^{\prime}+d_{2}{ }^{\prime} \cdot d_{1} \cdot d_{0}{ }^{\prime} \cdot L^{\prime}+d_{2}{ }^{\prime} \cdot d_{1} \cdot d_{0} \cdot L^{\prime}+d_{2} \cdot d_{1} \cdot d_{0}{ }^{\prime}+d_{2} \cdot d_{1} \cdot d_{0} \cdot L \\
& c_{2}=d_{2}{ }^{\prime} \cdot d_{1} \cdot d_{0}{ }^{\prime} \cdot L+d_{2}{ }^{\prime} \cdot d_{1} \cdot d_{0} \cdot L \\
& c_{3}=d_{2}{ }^{\prime} \cdot d_{1}{ }^{\prime} \cdot d_{0}{ }^{\prime} \cdot L+d_{2}{ }^{\prime} \cdot d_{1} \cdot \cdot d_{0} \cdot L
\end{aligned}
$$

Here's c_{3} as a circuit:

Simplifying using Boolean Algebra

$$
\begin{aligned}
\mathrm{c} 3 & =\mathrm{d} 2^{\prime} \cdot \mathrm{d} 1^{\prime} \cdot \mathrm{d} 0^{\prime} \cdot \mathrm{L}+\mathrm{d} 2^{\prime} \cdot \mathrm{d} 1^{\prime} \cdot \mathrm{d} 0 \cdot \mathrm{~L} \\
& =\mathrm{d} 2^{\prime} \cdot \mathrm{d} 1^{\prime} \cdot\left(\mathrm{d} 0^{\prime}+\mathrm{d} 0\right) \cdot \mathrm{L} \\
& =\mathrm{d} 2^{\prime} \cdot \mathrm{d} 1^{\prime} \cdot 1 \cdot \mathrm{~L} \\
& =\mathrm{d} 2^{\prime} \cdot \mathrm{d} 1^{\prime} \cdot \mathrm{L}
\end{aligned}
$$

Important Corollaries of this Construction

- \neg, \wedge, \vee can implement any Boolean function we didn't need any others to do this
- Actually, just \neg, \wedge (or \neg, \vee) are enough
follows by De Morgan's laws
- Actually, just NAND (or NOR)

1-bit Binary Adder

$$
\begin{array}{cl}
A & 0+0=0\left(\text { with } C_{\text {OUT }}=0\right) \\
+B & 0+1=1\left(\text { with } C_{\text {OUT }}=0\right) \\
\hline S & 1+0=1\left(\text { with } C_{\text {OUT }}=0\right) \\
\left(C_{\text {OUT }}\right) & 1+1=0\left(\text { with } C_{\text {OUT }}=1\right)
\end{array}
$$

1-bit Binary Adder

$$
\begin{array}{cl}
A & 0+0=0\left(\text { with } C_{\text {OUT }}=0\right) \\
+B & 0+1=1\left(\text { with } C_{\text {OUT }}=0\right) \\
\hline S & 1+0=1\left(\text { with } C_{\text {OUT }}=0\right) \\
\left(C_{\text {OUT }}\right) & 1+1=0\left(\text { with } C_{\text {OUT }}=1\right)
\end{array}
$$

Idea: chain these together to add larger numbers

Recall from
elementary school:

$$
\begin{array}{r}
248 \\
+375 \\
\hline
\end{array}
$$

1-bit Binary Adder

A	$0+0=0\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
+B	$0+1=1\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
S	$1+0=1\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
$\left(\mathrm{C}_{\text {OUT }}\right)$	$1+1=0\left(\right.$ with $\left.C_{\text {OUT }}=1\right)$

Idea: These are chained together with a carry-in

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\mathbf{I N}}$	$\mathbf{C}_{\mathbf{O U T}}$	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

$\mathrm{C}_{\text {Out }} \mathrm{C}_{\text {IN }}$				
A	A	A	A	A
B	B	B	B	B
S	S	S	S	S

A	B	$\mathrm{C}_{\text {IN }}$	$\mathrm{C}_{\text {out }}$	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$$
\begin{aligned}
S= & A^{\prime} \cdot B^{\prime} \cdot C_{I N}+A^{\prime} \cdot B \cdot C_{I N}+ \\
& A \cdot B^{\prime} \cdot C_{I N}^{\prime}+A \cdot B \cdot C_{I N}
\end{aligned}
$$

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

${ }^{\text {Cout }} \mathrm{C}_{\text {IN }}$				
A	A	A	A	A
B	B	B	B	B
S	S	S	S	S

A	B	$\mathrm{C}_{\text {IN }}$	$\mathrm{C}_{\text {OUT }}$	S	
0	0	0	0	0	
0	0	1	0	1	Derive an expression for Cout
0	1	0	0	1	
0	1	1	1	0	$A^{\prime} \cdot \mathrm{B} \cdot \mathrm{C}_{\text {IN }}$
1	0	0	0	1	$C_{\text {OUT }}=A^{\prime} \cdot B \cdot C_{\text {IN }}+A \cdot B^{\prime} \cdot C_{\text {IN }}+$
1	0	1	1	0	$\therefore A \cdot B^{\prime} \cdot C_{\text {IN }} \quad A \cdot B \cdot C_{\text {IN }}{ }^{\prime}+A \cdot B \cdot C_{\text {IN }}$
1	1	0	1	0	$A \cdot B \cdot C_{1 N}{ }^{\prime}$
1	1	1	1	1	$\cdots \mathrm{A} \cdot \mathrm{B} \cdot \mathrm{C}_{\text {IN }}$

$$
S=A^{\prime} \cdot B^{\prime} \cdot C_{I N}+A^{\prime} \cdot B \cdot C_{I_{N}^{\prime}}+A \cdot B^{\prime} \cdot C_{I N}^{\prime}+A \cdot B \cdot C_{I N}
$$

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

${ }^{C_{\text {OUt }} \mathrm{C}_{\text {IN }}}$				
A	A	A	A	A
B	B	B	B	B
S	S	S	S	S

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\text {IN }}$	$\mathbf{C}_{\text {OUT }}$	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$S=A^{\prime} \cdot B^{\prime} \cdot C_{I N}+A^{\prime} \cdot B \cdot C_{I N}+A \cdot B^{\prime} \cdot C_{I N}{ }^{\prime}+A \cdot B \cdot C_{I N}$
$C_{\text {OUT }}=A^{\prime} \cdot B \cdot C_{\text {IN }}+A \cdot B^{\prime} \cdot C_{\text {IN }}+A \cdot B \cdot C_{\text {IN }}{ }^{\prime}+A \cdot B \cdot C_{\text {IN }}$

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

- e.g., full adder's carry-out function

```
Cout \(=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n\)
    \(=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n{ }^{\prime}+A B C i n+A B C i n\)
    \(=A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n\)
    \(=\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n\)
    \(=(1) B C i n+A B^{\prime} C i n+A B C i n '+A B C i n\)
    \(=B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n+A B C i n\)
    \(=B C i n+A B^{\prime} C i n+A B C i n+A B C i n+A B C i n\)
    \(=B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n '+A B C i n\)
    \(=B C i n+A(1) C i n+A B C i n \prime+A B C i n\)
    \(=B C i n+A C i n+A B(C i n '+C i n)\)
    \(=B C i n+A C i n+A B(1)\)
    \(=B C i n+A C i n+A B\)
```


Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

- e.g., full adder's carry-out function

Cout

$$
=B C i n+A C i n+A B
$$

$$
\begin{aligned}
& =A^{\prime} B C i n+A B^{\prime} C i n+A B C i n '+A B C i n \\
& =A^{\prime} B C i n+A B^{\prime} C i n+A B C i n{ }^{\prime}+A B C i n+A B C i n \\
& =A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n \\
& =\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n \\
& =(1) B C i n+A B^{\prime} C i n+A B C i n '+A B C i n \\
& =B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n+A B C i n \\
& =B C i n+A B^{\prime} C i n+A B C i n+A B C i n '+A B C i n \\
& =B C i n+A\left(B^{\prime}+B\right) C i n+A B C i n '+A B C i n \\
& =B C i n+A(1) C i n+A B C i n \prime+A B C i n \\
& =B C i n+A C i n+A B\left(C i n^{\prime}+C i n\right) \\
& =B C i n+A C i n+A B(1)
\end{aligned}
$$

A 2-bit Ripple-Carry Adder

Mapping Truth Tables to Logic Gates

Given a truth table:

1. Write the output in a table
2. Write the Boolean expression
3. Minimize the Boolean expression
4. Draw as gates
5. Map to available gates
$F=A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C+A B C$
$=A^{\prime} B\left(C^{\prime}+C\right)+A C\left(B^{\prime}+B\right)$
$=A^{\prime} B+A C$

Canonical Forms

- Truth table is the unique signature of a $0 / 1$ function
- The same truth table can have many gate realizations
- We've seen this already
- Depends on how good we are at Boolean simplification
- Canonical forms
- Standard forms for a Boolean expression
- We all produce the same expression

Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

Add the minterms together

$$
F=A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C
$$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(1)

Read T rows off truth table
(2)

Convert to Boolean Algebra $\rightarrow A^{\prime} B^{\prime} C$

011

F

Sum-of-Products Canonical Form

Product term (or minterm)

- ANDed product of literals - input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

A	B	C	minterms
0	0	0	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$
0	0	1	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$
0	1	0	$\mathrm{~A}^{\prime} \mathrm{BC}^{\prime}$
0	1	1	$\mathrm{~A}^{\prime} \mathrm{BC}$
1	0	0	$A B^{\prime} \mathrm{C}^{\prime}$
1	0	1	$A B^{\prime} \mathrm{C}$
1	1	0	$A B C^{\prime}$
1	1	1	ABC

$$
\begin{aligned}
& \text { F in canonical form: } \\
& \begin{aligned}
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C \\
\text { canonical form } & \neq \text { minimal form } \\
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime} \\
& =\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime} \\
& =\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime} \\
& =C+A B C^{\prime} \\
& =A B C^{\prime}+C \\
& =A B+C
\end{aligned}
\end{aligned}
$$

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Multiply the maxterms together
$F=$
(1)

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

s off le
$-$

Negate all bits

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion

Multiply the maxterms together

$$
F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
$$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

(1)

Negate all bits truth table $000 \longrightarrow 111 \longrightarrow A+B+C$ $010 \longrightarrow 101$ $011 \longrightarrow A^{\prime}+B+C$

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F'

A	B	C	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F'

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
Taking the complement of both sides...

$$
\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}
$$

And using DeMorgan/Comp....

$$
F=\left(A^{\prime} B^{\prime} C^{\prime}\right)^{\prime}\left(A^{\prime} B C^{\prime}\right)^{\prime}\left(A B^{\prime} C^{\prime}\right)^{\prime}
$$

$$
F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
$$

Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals - input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

A	B	C	maxterms
0	0	0	$A+B+C$
0	0	1	$A+B+C^{\prime}$
0	1	0	$A+B^{\prime}+C$
0	1	1	$A+B^{\prime}+C^{\prime}$
1	0	0	$A^{\prime}+B+C$
1	0	1	$A^{\prime}+B+C^{\prime}$
1	1	0	$A^{\prime}+B^{\prime}+C$
1	1	1	$A^{\prime}+B^{\prime}+C^{\prime}$

$$
\begin{aligned}
& \text { F in canonical form: } \\
& \begin{aligned}
F(A, B, C)= & (A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\
\text { canonical form } & \neq \text { minimal form } \\
F(A, B, C)= & (A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\
= & (A+B+C)\left(A+B^{\prime}+C\right) \\
& (A+B+C)\left(A^{\prime}+B+C\right) \\
= & (A+C)(B+C)
\end{aligned}
\end{aligned}
$$

