CSE 311: Foundations of Computing

Lecture 4: Boolean Algebra, Circuits, Canonical Forms

OH2:30
today
cie 368

Last Time: Boolean Algebra

- Usual notation used in circuit design
- Boolean algebra
- a set of elements B ¢ontaining $\{0,1\}$
- binary operations $\{+, \cdot\}$.
- and a unary operation $\left\}^{\prime}\right.$ iomplonent (NOT)
- such that the following axioms hold:

For any $\mathrm{a}, \mathrm{b}, \mathrm{c}$ in B :

1. closure:
2. commutativity:
3. associativity:
4. distributivity:
5. identity:
6. eomplementarity:

7 nuil:
8 idempotency:
9. Involution:

$$
a+b \text { is in } B
$$

$a \cdot b$ is in B
$a \cdot b=b \cdot a$
$a \cdot(b \cdot c)=(a \cdot b) \cdot c$
$a \cdot(b+c)=(a \cdot b)+(a \cdot c)$
$a \cdot 1=a$
a• $a^{\prime}=0$
a• $0=0$
$a \cdot a=a$

Warm-up Exercise

- Create a Boolean Algebra expression for C below in terms of the variables \boldsymbol{a} and \boldsymbol{b}

Warm-up Exercise

- Create a Boolean Algebra expression for " c " below in terms of the variables \boldsymbol{a} and \boldsymbol{b}

$$
c=a b^{\prime}+a^{\prime} b
$$

- Draw this as a circuit (using AND, OR, NOT)

Last Time: Combinational Logic

Encoding:

- Binary number for weekday
(Binary encoding)
- One bit for each possible output ("1-Hot" encoding)

Last Time: Truth Table to Logic

	$\mathrm{d}_{2} \mathrm{~d}_{1} \mathrm{~d}_{0}$	L	c_{0}	C_{1}	c_{2}	c_{3}	
SUN	000	0	0	1	0	0	
SUN	000	1	0	0	0	1	$\mathrm{D}^{\prime}{ }^{\prime} \cdot \mathrm{d}_{1}{ }^{\prime} \cdot d_{0}{ }^{\prime} \cdot L$
MON	001	0	0	1	0	0	
MON	001	1	0	0	0	1	$\mathrm{d}_{2}{ }^{\prime} \cdot \mathrm{d}_{1}{ }^{\prime} \cdot \mathrm{d}_{0} \cdot L$
TUE	010	0	0	1	0	0	
TUE	010	1	0	0	1	0	Either situation causes c_{3} to be true. So, we "or" them.
WED	011	0	0	1	0	0	
WED	011	1	0	0	1	0	$c_{3}=\left(d_{2}{ }^{\prime} \cdot d_{1}{ }^{\prime}\right) \cdot d_{0}{ }^{\prime} \cdot L+d_{2}{ }^{\prime} \cdot d_{1}{ }^{\prime} \cdot d_{0} \cdot L$
THU	100	-	0	1	0	0	
FRI	101	0	1	0	0	0	
FRI	101	1	0	1	0	0	
SAT	110	-	1	0	0	0	
-	111	-	1	0	0	0	

Last Time: Truth Table to Logic

$$
\begin{aligned}
& c_{0}=d_{2} \cdot d_{1} \cdot d_{0} \cdot L^{\prime}+d_{2} \cdot d_{1} \cdot d_{0}^{\prime}+d_{2} \cdot d_{1} \cdot d_{0} \\
& c_{1}=d_{2}{ }^{\prime} \cdot d_{1}{ }^{\prime} \cdot d_{0}{ }^{\prime} \cdot L^{\prime}+d_{2}{ }^{\prime} \cdot d_{1}{ }^{\prime} \cdot d_{0} \cdot L^{\prime}+d_{2}{ }^{\prime} \cdot d_{1} \cdot d_{0}{ }^{\prime} \cdot L^{\prime}+d_{2}{ }^{\prime} \cdot d_{1} \cdot d_{0} \cdot L^{\prime}+d_{2} \cdot d_{1}{ }^{\prime} \cdot d_{0}{ }^{\prime}+d_{2} \cdot d_{1}{ }^{\prime} \cdot d_{0} \cdot L \\
& c_{2}=d_{2} \cdot d_{1} \cdot d_{0} \cdot L+d_{2} \cdot \bullet d_{1} \cdot d_{0} \cdot L \\
& c_{3}=d_{2} \cdot \cdot d_{1} \cdot \cdot d_{0} \cdot L+d_{2}{ }^{\prime} \cdot d_{1} \cdot \cdot d_{0} \cdot L
\end{aligned}
$$

Here's c_{3} as a circuit:

Simplifying using Boolean Algebra

$$
\begin{aligned}
\mathrm{c} 3 & =\mathrm{d} 2^{\prime} \cdot \mathrm{d} 1^{\prime} \cdot \mathrm{d} 0^{\prime} \cdot \mathrm{L}+\mathrm{d} 2^{\prime} \cdot \mathrm{d} 1^{\prime} \cdot \mathrm{d} 0 \cdot \mathrm{~L} \\
& =\mathrm{d} 2^{\prime} \cdot \mathrm{d} 1^{\prime} \cdot\left(\mathrm{d} 0^{\prime}+\mathrm{d} 0\right) \cdot \mathrm{L} \\
& =\mathrm{d} 2^{\prime} \cdot \mathrm{d} 1^{\prime} \cdot 1 \cdot \mathrm{~L} \\
& =\mathrm{d} 2^{\prime} \cdot \mathrm{d} 1^{\prime} \cdot \mathrm{L}
\end{aligned}
$$

Important Corollaries of this Construction

- \neg, \wedge, \vee can implement any Boolean function we didn't need any others to do this
- Actually, just $\neg, \wedge($ or $\neg, \vee)$ are enough follows by De Morgan's laws
- Actually, just NAND (or NOR)

$$
\begin{gathered}
7(7 a \wedge 7 b) \\
(77 a \vee 77 b) \\
(a \vee b)
\end{gathered}
$$

1-bit Binary Adder

$$
\begin{array}{cl}
A & 0+0=0\left(\text { with } C_{\text {OUT }}=0\right) \\
+B & 0+1=1\left(\text { with } C_{\text {OUT }}=0\right) \\
\hline S & 1+0=1\left(\text { with } C_{\text {OUT }}=0\right) \\
\left(C_{\text {OUT }}\right) & 1+1=0\left(\text { with } C_{\text {OUT }}=1\right)
\end{array}
$$

1-bit Binary Adder

$$
\begin{array}{cl}
A & 0+0=0\left(\text { with } C_{O U T}=0\right) \\
+B & 0+1=1\left(\text { with } C_{O U T}=0\right) \\
\hline S & 1+0=1\left(\text { with } C_{O U T}=0\right) \\
\left(C_{\text {OUT }}\right) & 1+1=0\left(\text { with } C_{O U T}=1\right)
\end{array}
$$

Idea: chain these together to add larger numbers

Recall from
elementary school:

$$
\begin{array}{r}
1 \\
248 \\
+375 \\
\hline 623
\end{array}
$$

1-bit Binary Adder

A	$0+0=0\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
$+B$	$0+1=1\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
S	$1+0=1\left(\right.$ with $\left.C_{\text {OUT }}=0\right)$
$\left(C_{\text {OUT }}\right)$	$1+1=0\left(\right.$ with $\left.C_{\text {OUT }}=1\right)$

Idea: These are chained together with a carry-in

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\mathbf{I N}}$	$\mathbf{C}_{\text {OUT }}$	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

$\mathrm{C}_{\text {OUt }} \mathrm{C}_{\text {In }}$				
A	A	A	A	A
B	B	B	B	B
S	S	S	S	S

$$
\begin{aligned}
S= & A^{\prime} \cdot B^{\prime} \cdot C_{I N}+A^{\prime} \cdot B \cdot C_{I N}+ \\
& A \cdot B^{\prime} \cdot C_{I N}+A \cdot B \cdot C_{I N}
\end{aligned}
$$

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

$\mathrm{C}_{\text {out }} \mathrm{C}_{\text {IN }}$				
吹				
A	A	A	A	A
B	B	B	B	B
S	S	S	S	S

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\text {IN }}$	$\mathbf{C}_{\text {OUT }}$	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Derive an expression for $\mathrm{C}_{\mathrm{OUT}}$

$$
S=A^{\prime} \cdot B^{\prime} \cdot C_{I N}+A^{\prime} \cdot B \cdot C_{I N}^{\prime}+A \cdot B^{\prime} \cdot C_{I N}^{\prime}+A \cdot B \cdot C_{I N}
$$

1-bit Binary Adder

- Inputs: A, B, Carry-in
- Outputs: Sum, Carry-out

| $C_{\text {OUT }} C_{\text {IN }}$ | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| A | A | A | A | A |
| B | B | B | B | |
| S | S | S | S | S |

\mathbf{A}	\mathbf{B}	$\mathbf{C}_{\text {IN }}$	$\mathbf{C}_{\text {out }}$	\mathbf{S}
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

$S=A^{\prime} \cdot B^{\prime} \cdot C_{\text {IN }}+A^{\prime} \cdot B \cdot C_{I N}+A \cdot B^{\prime} \cdot C_{I N}{ }^{\prime}+A \cdot B \cdot C_{I N}$
$C_{\text {OUT }}=A^{\prime} \cdot B \cdot C_{\text {IN }}+A \cdot B^{\prime} \cdot C_{\text {IN }}+A \cdot B \cdot C_{\text {IN }}+A \cdot B \cdot C_{\text {IN }}$

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

- e.g., full adder's carry-out function $a=a+a$

Cout $=A^{\prime} B C$ in $+A B^{\prime} C$ in $+A B C$ in $+A B C i n$
$=A^{\prime} B C i n+\bar{A}^{\prime} B^{\prime} C i n+A \bar{B} C^{\prime} n^{\prime}+A B C i n+A B C i n$
$=A^{\prime} B C$ in $+A B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C$ in
$=\left(A^{\prime}+A\right) B C$ in $+A B^{\prime} C i n+A B C i n '+A B C i n$
$=(1) B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n+A B C i n$
$=B$ Cin $+A B^{\prime} C i n+A B$ gin $+A B C i n^{\prime}+\overline{A B C i n}$
$=B C i n+\bar{A}\left(B^{\prime}+B\right) C i n+A B C i n \prime+A B C i n$
$=\mathrm{BCin}+\mathrm{A}(1) \mathrm{Cin}+\mathrm{ABCin}{ }^{\prime}+\mathrm{ABCin}$
$=B C i n+A C i n+A B\left(C i n^{\prime}+C i n\right)$
"Karrangh marr"
$=B C i n+A C i n+A B(1)$
$=B \operatorname{Cin}+A \operatorname{Cin}+A B$

Apply Theorems to Simplify Expressions

The theorems of Boolean algebra can simplify expressions

- e.g., full adder's carry-out function

Cout $=A^{\prime} B C$ Cin $+A B^{\prime} \operatorname{Cin}+A B C i n n^{\prime}+A B C i n$
$=A^{\prime} B C i n+A B^{\prime} C i n+A B C i n \prime+A B C i n+A B C i n$
$=A^{\prime} B C i n+A B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n$
$=\left(A^{\prime}+A\right) B C i n+A B^{\prime} C i n+A B C i n '+A B C i n$
= (1) B Cin $+A B^{\prime} C i n+A B C i n '+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n^{\prime}+A B C i n+A B C i n$
$=B C i n+A B^{\prime} C i n+A B C i n+A B C i n^{\prime}+A B C i n$
$=B C i n+A\left(B^{\prime}+B\right) C i n+A B C i^{\prime}+A B C i n$
$=B C i n+A(1) C i n+A B C i n '+A B C i n$
$=B C i n+A C i n+A B(C i n \prime+C i n)$
$=B$ Cin + ACin + AB(1)
$=B$ Cin + ACin + AB

A 2-bit Ripple-Carry Adder

Mapping Truth Tables to Logic Gates

Given a truth table:

1. Write the output in a table
2. Write the Boolean expression
3. Minimize the Boolean expression
4. Draw as gates
5. Map to available gates

F $\quad \mathrm{F}=A^{\prime} B C^{\prime}+A^{\prime} B C+A B^{\prime} C+A B C$
(3) $=A^{\prime} B\left(C^{\prime}+C\right)+A C\left(B^{\prime}+B\right)$
$=A^{\prime} B+A C$
(4)

Canonical Forms

- Truth table is the unique signature of a $0 / 1$ function
- The same truth table can have many gate realizations
- We've seen this already
- Depends on how good we are at Boolean simplification
- Canonical forms
- Standard forms for a Boolean expression
- We all produce the same expression

Sum-of-Products Canonical Form

- AKA Disjunctive Normal Form (DNF)
- AKA Minterm Expansion

Add the minterms together

Sum-of-Products Canonical Form

Product term (or minterm)

- ANDed product of literals - input combination for which output is true
- each variable appears exactly once, true or inverted (but not both)

A	B	C	minterms
0	0	0	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$
0	0	1	$\mathrm{~A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}$
0	1	0	$\mathrm{~A}^{\prime} \mathrm{BC}^{\prime}$
0	1	1	$\mathrm{~A}^{\prime} \mathrm{BC}$
1	0	0	$A B^{\prime} C^{\prime}$
1	0	1	$A B^{\prime} \mathrm{C}$
1	1	0	$A B C^{\prime}$
1	1	1	ABC

$$
\begin{aligned}
& \text { F in canonical form: } \\
& \begin{aligned}
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}+A B C \\
\text { canonical form } & \neq \text { minimal form } \\
F(A, B, C) & =A^{\prime} B^{\prime} C+A^{\prime} B C+A B^{\prime} C+A B C+A B C^{\prime} \\
& =\left(A^{\prime} B^{\prime}+A^{\prime} B+A B^{\prime}+A B\right) C+A B C^{\prime} \\
& =\left(\left(A^{\prime}+A\right)\left(B^{\prime}+B\right)\right) C+A B C^{\prime} \\
& =C+A B C^{\prime} \\
& =A B C^{\prime}+C \\
& =A B+C
\end{aligned}
\end{aligned}
$$

Product-of-Sums Canonical Form

- AKACOnjunctive Normal Form (CNF)
- AKA Maxterm Expansion
(4)

Multiply the maxterms together

$$
F=
$$

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
Read tru			
	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Read F rows off truth table
(2)

Negate all bits

Convert to Boolean Algebra

Product-of-Sums Canonical Form

- AKA Conjunctive Normal Form (CNF)
- AKA Maxterm Expansion
(4)

Multiply the maxterms together

$$
F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
$$

(1)

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
$\mathbf{0}$	\mathbf{y}	Read	
0	0	0	
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Read F rows off truth table
(2)

Negate all bits
000

010
$\longrightarrow 101$
$111 \longrightarrow \xrightarrow{A+B+C}$

011
(3)

Convert to Boolean Algebra

$A+B^{\prime}+C$
$A^{\prime}+B+C$

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F^{\prime}

Product-of-Sums: Why does this procedure work?

Useful Facts:

- We know (F')' = F
- We know how to get a minterm expansion for F^{\prime}

\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{F}
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

$F^{\prime}=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}$
Taking the complement of both sides...
$\left(F^{\prime}\right)^{\prime}=\left(A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B C^{\prime}+A B^{\prime} C^{\prime}\right)^{\prime}$
And using DeMorgan/Comp....

$$
\begin{gathered}
F=\left(A^{\prime} B^{\prime} C^{\prime}\right)^{\prime}\left(A^{\prime} B C^{\prime}\right)^{\prime}\left(A B^{\prime} C^{\prime}\right)^{\prime} \\
F=(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right)
\end{gathered}
$$

Product-of-Sums Canonical Form

Sum term (or maxterm)

- ORed sum of literals - input combination for which output is false
- each variable appears exactly once, true or inverted (but not both)

A	B	C	maxterms
0	0	0	$\mathrm{~A}+\mathrm{B}+\mathrm{C}$
0	0	1	$\mathrm{~A}+\mathrm{B}+\mathrm{C}^{\prime}$
0	1	0	$\mathrm{~A}+\mathrm{B}^{\prime}+\mathrm{C}$
0	1	1	$\mathrm{~A}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$
1	0	0	$\mathrm{~A}^{\prime}+\mathrm{B}+\mathrm{C}$
1	0	1	$\mathrm{~A}^{\prime}+\mathrm{B}+\mathrm{C}^{\prime}$
1	1	0	$\mathrm{~A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}$
1	1	1	$\mathrm{~A}^{\prime}+\mathrm{B}^{\prime}+\mathrm{C}^{\prime}$

F in canonical form:
$\begin{aligned} F(A, B, C) & =(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\ \text { canonical form } & \neq \text { minimal form } \\ F(A, B, C) & =(A+B+C)\left(A+B^{\prime}+C\right)\left(A^{\prime}+B+C\right) \\ & =(A+B+C)\left(A+B^{\prime}+C\right) \\ & (A+B+C)\left(A^{\prime}+B+C\right) \\ = & (A+C)(B+C)\end{aligned}$

