Problem Set 6

Due: Wednesday, May 17, by $11: 59$ pm

Instructions

Solutions submission. You must submit your solution via Gradescope. In particular:

- Submit a single PDF file in Gradescope containing the written solution to all the regular tasks 1-5 in the homework.
- Submit your solution to Task 6 online to grin.cs as described in the task itself.
- The extra credit is submitted separately in Gradescope

Task 1 - Happily Ever After [20 pts]

Let S be defined as follows.

Basis Step: $3 \in S ; 5 \in S$
Recursive Step: if $x, y \in S$, then $x+y \in S$.
Prove that, for all integers $n \geqslant 8$, we have $n \in S$.
Hint: Strong induction is the right tool here since the quantifier is not over S (so structural induction does not apply). You will probably want to use multiple base cases until you have enough to be able apply the inductive hypothesis.

Task 2 - Barking Up the Strong Tree
Consider the function $g(n)$ defined for $n \in \mathbb{N}$ recursively as follows:

$$
\begin{aligned}
g(0) & =0 & & \text { case: } n=0 \\
g(n) & =g(n / 2)+1 & & \text { case: } n>0 \text { and even (so } n / 2>0 \text { is an integer) } \\
g(n) & =g(n-1) & & \text { case: } n>0 \text { and odd }
\end{aligned}
$$

The first line gives the definition of $g(n)$ for $n=0$, the second line gives the definition for even (nonzero) n, and the third line gives the definition for odd n. Those three cases are mutually exclusive and exhaustive, so they define g completely.

Use strong induction to prove that

$$
\forall n \geqslant 1\left(2^{g(n)} \leqslant n<2^{g(n)+1}\right) .
$$

Hint: You will need to use the fact that for natural numbers k and m if $k+1$ is odd and $k+1<2^{m+1}+1$ then $k+1<2^{m+1}$. (This follows since $k+1$ is odd and 2^{m+1} is even which means they can't be equal.)

Recall the definition of lists of numbers from lecture:

Basis Step: nil \in List

Recursive Step: for any $a \in \mathbb{Z}$, if $L \in \mathbf{L i s t}$, then $a:: L \in$ List.
and the function concat, which concatenates two lists into a single list is defined recursively as follows:

$$
\begin{array}{rll}
\operatorname{concat}(\mathrm{nil}, R) & :=R & \forall R \in \text { List } \\
\operatorname{concat}(a:: L, R) & :=a:: \operatorname{concat}(L, R) & \forall a \in \mathbb{Z}, \forall L, R \in \text { List }
\end{array}
$$

For example, the list $[1,2,3]$ would be created recursively from the empty list as $1::(2::(3::$ nil $))$. We will consider "::" to associate to the right, so the simpler expression $1:: 2:: 3$:: nil means the same thing. For example, we get concat $([1,2],[3])=\operatorname{concat(1::2::nil,~} 3::$ nil) $=1:: 2:: 3::$ nil from these definitions.

Now for your task: Let $R, S \in$ List. Use structural induction on L to prove that

$$
\forall L \in \operatorname{List}(\operatorname{concat}(\operatorname{concat}(L, R), S)=\operatorname{concat}(L, \operatorname{concat}(R, S))
$$

If we write concat as " + ", then this says that $(L+R)+S=L+(R+S)$. In other words, we are asking you to prove that concat is associative.

Recall the set of rooted binary trees from lecture, denoted Tree, defined by recursion as follows.
Basis: The tree with one node, denoted by \bullet, is a Tree.
Recursive step: If T_{1} and T_{2} are rooted binary trees, then $\operatorname{Tree}\left(T_{1}, T_{2}\right)$ is a Tree. It represents the tree with a new root node whose left child is T_{1} and whose right child is T_{2}.

Also recall the definition of the size and height functions on trees:

$$
\begin{aligned}
& \operatorname{size}(\bullet):=1 \\
& \operatorname{size}\left(\operatorname{Tree}\left(T_{1}, T_{2}\right)\right):=1+\operatorname{size}\left(T_{1}\right)+\operatorname{size}\left(T_{2}\right) \\
& \operatorname{height}(\bullet):=0 \\
& \operatorname{height}\left(\operatorname{Tree}\left(T_{1}, T_{2}\right)\right):=1+\max \left(\operatorname{height}\left(T_{1}\right), \operatorname{height}\left(T_{2}\right)\right)
\end{aligned}
$$

Now let A, the almost balanced binary trees, be a subset of Tree defined by recursion as follows.
Basis: The tree \bullet is in A.
Recursive step: If T_{1} is in A and T_{2} is in A and either height $\left(T_{1}\right)=\operatorname{height}\left(T_{2}\right)$ or height $\left(T_{1}\right)$ and height $\left(T_{2}\right)$ differ by 1 , then $\operatorname{Tree}\left(T_{1}, T_{2}\right)$ is in A.

Prove by induction that for all $T \in A$,

$$
\operatorname{size}(T) \geqslant f_{\text {height }(T)+1},
$$

where f_{m} denotes the m-th Fibonacci number.
(As usual $f_{0}=0, f_{1}=1$, and $f_{m}=f_{m-1}+f_{m-2}$ for $m \geqslant 2$.)
Task 5 - A Few of My Favorite Strings
For each of the following, write a recursive definition of the set of strings satisfying the given properties. Briefly justify that your solution is correct.
a) Binary strings where every 0 is immediately followed by a 1 .
b) Binary strings that start with 0 and have even length.
c) Binary strings with an even number of 0 s.

For each of the following, construct regular expressions that match the given set of strings:
a) Binary strings where every 0 is immediately followed by a 1 .
b) Binary strings that start with 0 and have even length.
c) Binary strings of length at least 2 with an even number of 0 s that begin and end with the same character.
d) Binary strings with at least three 0 s .
e) Binary strings with at least three 0 s or at most two 1 s .

Submit and check your answers to this question here:
https://grin.cs.washington.edu/
Think carefully about your answer to make sure it is correct before submitting. (Note: don't include unnecessary spaces.)
You have only 3 chances to submit a correct answer.

Task 7 - Extra Credit: Completely Stoned

Consider an infinite sequence of positions $1,2,3, \ldots$ and suppose we have a stone at position 1 and another stone at position 2. In each step, we choose one of the stones and move it according to the following rule: Say we decide to move the stone at position i; if the other stone is not at any of the positions $i+1, i+2, \ldots, 2 i$, then it goes to $2 i$, otherwise it goes to $2 i+1$.

For example, in the first step, if we move the stone at position 1 , it will go to 3 and if we move the stone at position 2 it will go to 4 . Note: no matter how we move the stones, they will never be at the same position.

Use induction to prove that, for any given positive integer n, it is possible to move one of the stones to position n. For example, if $n=7$ first we move the stone at position 1 to 3 . Then, we move the stone at position 2 to 5 Finally, we move the stone at position 3 to 7 .

