Problem Set 5

Due: Wednesday, May 3, by 11:59pm

Instructions

Solutions submission. You must submit your solution via Gradescope. In particular:

- Submit a single PDF file in Gradescope containing the written solution to all the regular tasks in the homework.
- The extra credit is submitted separately in Gradescope

Task 1 - Modding Off

a) Compute $3^{293} \bmod 100$ using the efficient modular exponentiation algorithm.

Show all intermediate results.
b) How many multiplications does the algorithm use for this computation? (Assume that we do not need to perform a multiplication to calculate $3^{1}=3$ since we know that $x^{1}=x$ for any x.)
c) The integer 3^{293} has 140 digits, so calculating $3^{293} \bmod 100$ by first calculating 3^{293} and then reducing it modulo 100 would require storing a 140-digit number.
If we calculate $3^{293} \bmod 100$ as in part (a), with each of the modular multiplications $(a \times b) \bmod 100$ performed by calculating the integer $a \times b$ and then reducing it modulo 100, what is the largest number of decimal digits that could appear in any number computed by any step of this computation?

Task 2 - Game, Set, Match
[14 pts]
Prove that for all sets A, B, and C we must have:

$$
(B \backslash A) \cup(C \backslash A)=(B \cup C) \backslash A .
$$

Task 3 - We've Got the Power
Prove or disprove the following statements:
a) For any two sets S and T, we must have:

$$
\mathcal{P}(S \cap T)=\mathcal{P}(S) \cap \mathcal{P}(T)
$$

b) For any two sets S and T, we must have:

$$
\mathcal{P}(S \cup T)=\mathcal{P}(S) \cup \mathcal{P}(T) \cup \mathcal{P}(S \cap T) .
$$

Let B and C be non-empty sets.
a) Prove that if A is also non-empty then we must have $(A \times B=A \times C) \rightarrow B=C$.
b) Is the conclusion of part a) true if A is empty? Why or why not?

Task 5 - Induction Cooking
[20 pts]
Prove that for every $n \in \mathbb{N}$, the following equality is true:

$$
0 \cdot 2^{0}+1 \cdot 2^{1}+2 \cdot 2^{2}+\cdots+n \cdot 2^{n}=(n-1) 2^{n+1}+2 .
$$

Task 6 - Inductive Bias
[20 pts]
Let $x \in \mathbb{R}$ satisfy $x>0$. Prove, by induction, that $(2+x)^{n+1}>2^{n+1}+n 2^{n} x$ holds for all $n \in \mathbb{N}$.

Task 7 - Extra Credit: RSA and modular exponentiation

We know that we can reduce the base of an exponent modulo m before multiplying or powering $(\bmod m)$: That is, $a^{k} \equiv(a \bmod m)^{k}(\bmod m)$. But the same is not true of the exponent itself! That is, we cannot write $a^{k} \equiv a^{k} \bmod m(\bmod m)$. This is easily seen to be false in general. Consider, for instance, that $2^{10} \bmod 3=1$ but $2^{10} \bmod 3 \bmod 3=2^{1} \bmod 3=2$.

The correct law for the exponent is more subtle. We will prove it in steps....
a) Let $R=\{n \in \mathbb{Z}: 1 \leqslant n \leqslant m-1 \wedge \operatorname{gcd}(n, m)=1\}$. Define the set $a R=\{a x \bmod m: x \in R\}$. Prove that $a R=R$ for every integer $a>0$ with $\operatorname{gcd}(a, m)=1$.
b) Consider the products modulo m of all the elements in R and of all the elements in $a R$. By comparing those two expressions, conclude that for all $a \in R$ we have $a^{\phi(m)} \equiv 1(\bmod m)$, where $\phi(m)=|R|$.
c) Use the last result to show that, for any $b \geqslant 0$ and $a \in R$, we have $a^{b} \equiv a^{b \bmod \phi(m)}(\bmod m)$.
d) Now, prove the following two facts about the function ϕ above. First, if p is prime, then $\phi(p)=p-1$. Second, for any positive integers a and b with $\operatorname{gcd}(a, b)=1$, we have $\phi(a b)=\phi(a) \phi(b)$.
e) The two facts from part d) imply that, if p and q are primes, then $\phi(p q)=(p-1)(q-1)$., along with part c), prove the Fact: on Slide 26 about RSA from Lecture 12, and complete the proof of correctness of the algorithm?

