Problem Set 5

Due: Wednesday, May 3, by 11:59pm

Instructions

Solutions submission. You must submit your solution via Gradescope. In particular:

- Submit a single PDF file in Gradescope containing the written solution to all the regular tasks in the homework.
- The extra credit is submitted separately in Gradescope

Task 1 – Modding Off [15 pts]

a) Compute $3^{293} \mod 100$ using the efficient modular exponentiation algorithm. Show all intermediate results.

b) How many multiplications does the algorithm use for this computation? (Assume that we do not need to perform a multiplication to calculate $3^1 = 3$ since we know that $x^1 = x$ for any x.)

c) The integer 3^{293} has 140 digits, so calculating $3^{293} \mod 100$ by first calculating 3^{293} and then reducing it modulo 100 would require storing a 140-digit number. If we calculate $3^{293} \mod 100$ as in part (a), with each of the modular multiplications $(a \times b) \mod 100$ performed by calculating the integer $a \times b$ and then reducing it modulo 100, what is the largest number of decimal digits that could appear in any number computed by any step of this computation?

Task 2 – Game, Set, Match [14 pts]

Prove that for all sets A, B, and C we must have:

$$(B \setminus A) \cup (C \setminus A) = (B \cup C) \setminus A.$$

Task 3 – We’ve Got the Power [16 pts]

Prove or disprove the following statements:

a) For any two sets S and T, we must have:

$$\mathcal{P}(S \cap T) = \mathcal{P}(S) \cap \mathcal{P}(T).$$

b) For any two sets S and T, we must have:

$$\mathcal{P}(S \cup T) = \mathcal{P}(S) \cup \mathcal{P}(T) \cup \mathcal{P}(S \cap T).$$
Task 4 – Keeping up with the Cartesians [15 pts]

Let B and C be non-empty sets.

a) Prove that if A is also non-empty then we must have $(A \times B = A \times C) \implies B = C$.

b) Is the conclusion of part a) true if A is empty? Why or why not?

Task 5 – Induction Cooking [20 pts]

Prove that for every $n \in \mathbb{N}$, the following equality is true:

$$0 \cdot 2^0 + 1 \cdot 2^1 + 2 \cdot 2^2 + \cdots + n \cdot 2^n = (n - 1)2^{n+1} + 2.$$

Task 6 – Inductive Bias [20 pts]

Let $x \in \mathbb{R}$ satisfy $x > 0$. Prove, by induction, that $(2 + x)^{n+1} > 2^{n+1} + n2^n x$ holds for all $n \in \mathbb{N}$.
We know that we can reduce the base of an exponent modulo \(m \) before multiplying or powering (mod \(m \)): That is, \(a^k \equiv (a \mod m)^k \mod m \). But the same is not true of the exponent itself! That is, we cannot write \(a^k \equiv a^{k \mod m} \mod m \). This is easily seen to be false in general. Consider, for instance, that \(2^{10} \mod 3 = 1 \) but \(2^{10 \mod 3} \mod 3 = 2^1 \mod 3 = 2 \).

The correct law for the exponent is more subtle. We will prove it in steps....

a) Let \(R = \{ n \in \mathbb{Z} : 1 \leq n \leq m - 1 \land \gcd(n, m) = 1 \} \). Define the set \(aR = \{ ax \mod m : x \in R \} \).
Prove that \(aR = R \) for every integer \(a > 0 \) with \(\gcd(a, m) = 1 \).

b) Consider the products modulo \(m \) of all the elements in \(R \) and of all the elements in \(aR \). By comparing those two expressions, conclude that for all \(a \in R \) we have \(a^{\phi(m)} \equiv 1 \mod m \), where \(\phi(m) = |R| \).

c) Use the last result to show that, for any \(b \geq 0 \) and \(a \in R \), we have \(a^b \equiv a^{b \mod \phi(m)} \mod m \).

d) Now, prove the following two facts about the function \(\phi \) above. First, if \(p \) is prime, then \(\phi(p) = p - 1 \). Second, for any positive integers \(a \) and \(b \) with \(\gcd(a, b) = 1 \), we have \(\phi(ab) = \phi(a)\phi(b) \).

e) The two facts from part d) imply that, if \(p \) and \(q \) are primes, then \(\phi(pq) = (p - 1)(q - 1) \), along with part c), prove the Fact: on Slide 26 about RSA from Lecture 12, and complete the proof of correctness of the algorithm?