
CSE 311 Section 09

Models of Computation



Administrivia



Announcements & Reminders

● HW6 Regrade Requests

○ Submit a regrade request if something was graded incorrectly

● HW7

○ Due Tomorrow Friday 12/1 @10pm

○ Late due date 12/4 @ 10pm 

● HW8

○ Due Friday 12/8 @ 10pm

○ Late due date 12/11 @ 10pm 

● Final Exam

○ Monday 12/11 @ 4:30pm-6:20 @ KNE 130

○ Fill out Form for Conflict Exam



Recursively Defined Sets



Recursive Definition of Sets
Define a set 𝑆 as follows:

Basis Step: 
Describe the basic starting elements in your set
ex: 0 ∈ 𝑆

Recursive Step: 
Describe how to derive new elements of the set from previous elements
ex: If 𝑥 ∈ 𝑆 then 𝑥 + 2 ∈ 𝑆.

Exclusion Rule: Every element of 𝑆 is in 𝑆 from the basis step (alone) or a
finite number of recursive steps starting from a basis step.



Regular Expressions



Regular Expressions
Basis: 
● 𝜀 : The empty string itself matches the pattern (and nothing else does). 

● ∅ : No strings match this pattern

● 𝑎 for any 𝑎 ∈ Σ : The character itself matching this pattern

Recursive: 
● If 𝐴, 𝐵 are regular expressions then (𝐴∪𝐵) is a regular expression 

○ matched by any string that matches 𝐴 or that matches 𝐵 [or both]

● If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression 

○ matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵

● If 𝐴 is a regular expression, then 𝐴* is a regular expression 

○ matched by any string that can be divided into 0 or more strings that match 𝐴



Regular Expressions
A regular expression is a recursively defined set of strings that form a 
language.

A regular expression will generate all strings in a language, and won’t generate 
any strings that ARE NOT in the language

Hints:

● Come up with a few examples of strings that ARE and ARE NOT in your 

language

● Then, after you write your regex, check to make sure that it CAN generate 

all of your examples that are in the language, and it CAN’T generate those 

that are not



Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should be no 

leading zeroes).

b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

c) Write a regular expression that matches all binary strings that contain the 
substring “111”, but not the substring “000”.

d) Write a regular expression that matches all binary strings that do not have any 
consecutive 0’s or 1’s.

e) Write a regular expression that matches all binary strings of the form 1𝑘𝑦, where 
𝑘 ≥ 1 and 𝑦 ∈ {0,1}∗ has at least 𝑘 1’s.

Work on this problem with the people around you.



Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should be no 

leading zeroes).



Problem 1 – Regular Expressions
a) Write a regular expression that matches base 10 numbers (e.g., there should be no 

leading zeroes).

0 ∪ ((1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)(0 ∪ 1 ∪ 2 ∪ 3 ∪ 4 ∪ 5 ∪ 6 ∪ 7 ∪ 8 ∪ 9)∗)



Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible by 3.



Problem 1 – Regular Expressions
b) Write a regular expression that matches all base-3 numbers that are divisible by 3.

0 ∪ ((1 ∪ 2)(0 ∪ 1 ∪ 2)∗ 0)



Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.



Problem 1 – Regular Expressions
c) Write a regular expression that matches all binary strings that contain the 

substring “111”, but not the substring “000”.

(01 ∪ 001 ∪ 1∗ )∗ (0 ∪ 00 ∪ ε)111(01 ∪ 001 ∪ 1∗)∗ (0 ∪ 00 ∪ ε)



Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any 

consecutive 0’s or 1’s.



Problem 1 – Regular Expressions
d) Write a regular expression that matches all binary strings that do not have any 

consecutive 0’s or 1’s.

((01)∗ (0 ∪ ε)) ∪ ((10)∗ (1 ∪ ε))



Problem 1 – Regular Expressions
e) Write a regular expression that matches all binary strings of the form 1𝑘𝑦, where 

𝑘 ≥ 1 and 𝑦 ∈ {0,1}∗ has at least 𝑘 1’s.



Problem 1 – Regular Expressions
e) Write a regular expression that matches all binary strings of the form 1𝑘𝑦, where 

𝑘 ≥ 1 and 𝑦 ∈ {0,1}∗ has at least 𝑘 1’s.

1(0 ∪ 1)∗ 1(0 ∪ 1)∗

Explanation: While it may seem like we need to keep track of how many 1’s there 
are, it turns out that we don’t. Convince yourself that strings in the language are 
exactly those of the form 1x, where x is any binary string with at least one 1. Hence, 
x is matched by the regular expression (0 ∪ 1)∗1(0 ∪ 1)∗



Context-Free Grammars



Context-Free Grammars

A context free grammar (CFG) is a finite set of production rules 
over: 

● An alphabet Σ of “terminal symbols” 

● A finite set 𝑉 of “nonterminal symbols” 

● A start symbol (one of the elements of 𝑉) usually denoted 𝑆

A production rule for a nonterminal 𝐴 ∈ 𝑉 takes the form 

● 𝐴 → 𝑤1 | 𝑤2 | … |𝑤𝑘

Where each 𝑤𝑖 ∈ 𝑉∪ Σ* is a string of nonterminals and terminals.



Problem 2 – CFGs
Write a context-free grammar to match each of these languages.

a) All binary strings that start with 11.

b) All binary strings that contain at most one 1.

c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2. 

Work on this problem with the people around you.



Problem 2 – CFGs
a) All binary strings that start with 11.



Problem 2 – CFGs
a) All binary strings that start with 11.

S →  11T
T →  1T |  0T |  ε



Problem 2 – CFGs
b) All binary strings that contain at most one 1.



Problem 2 – CFGs
b) All binary strings that contain at most one 1.

S →  ABA
A →  0A |  ε 
B →  1  |  ε



Problem 2 – CFGs
c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2. 



Problem 2 – CFGs
c) All strings over 0, 1, 2 with the same number of 1s and 0s and exactly one 2. 

S →  01S |  10S | 0S1  |  1S0 |  S01 |  S10  |  2

Or:

S →  2T |  T2  |  ST |  TS |  0S1  |  1S0 
T →  TT |  0T1  |  1T0  |  ε



Deterministic Finite Automata



Deterministic Finite Automata
● A DFA is a finite-state machine that accepts or rejects a given string of symbols, by running 

through a state sequence uniquely determined by the string.

● In other words: 

○ Our machine is going to get a string as input. It will read one character at a time and 

update “its state.” 

○ At every step, the machine thinks of itself as in one of the (finite number) vertices. When 

it reads the character, it follows the arrow labeled with that character to its next state. 

○ Start at the “start state” (unlabeled, incoming arrow). 

○ After you’ve read the last character, accept the string if and only if you’re in a “final 

state” (double circle).

● Every machine is defined with respect to an alphabet Σ 

● Every state has exactly one outgoing edge for every character in Σ 

● There is exactly one start state; can have as many accept states (aka final states) as you want 

– including none. 



Problem 3 – DFAs, Stage 1
Construct DFAs to recognize each of the following languages. 
Let Σ = {0, 1, 2, 3}.

a) All binary strings.

b) All strings whose digits sum to an even number.

c) All strings whose digits sum to an odd number. 

Work on this problem with the people around you.



Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
a) All binary strings. 



Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
a) All binary strings. 

q0start q1

0,1 0,1,2,3

2,3

q0 : binary strings
q1 : strings that contain a character which is not 0 or 1



Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
b) All strings whose digits sum to an even number.



Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
b) All strings whose digits sum to an even number.

q0: strings whose sum of digits is even
q1: strings whose sum of digits is odd

q0start q1

0,2 0,2

1,3



Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
c) All strings whose digits sum to an odd number. 



Problem 3 – DFAs, Stage 1
Let Σ = {0, 1, 2, 3}.
c) All strings whose digits sum to an odd number. 

q0: strings whose sum of digits is even
q1: strings whose sum of digits is odd

q0start q1

0,2 0,2

1,3

1,3



Nondeterministic Finite Automata



Nondeterministic Finite Automata
● Similar to DFAs, but with less restrictions.

○ From a given state, we’ll allow any number of outgoing edges labeled with a given 

character. (In a DFA, we have only 1 outgoing edge labeled with each character).

○ The machine can follow any of them. 

○ We’ll have edges labeled with “𝜀” – the machine (optionally) can follow one of 

those without reading another character from the input. 

○ If we “get stuck” i.e. the next character is 𝑎 and there’s no transition leaving our 

state labeled 𝑎, the computation dies.

● An NFA still has exactly one start state and any number of final states. 

● The NFA accepts 𝑥 if there is some path from a start state to a final state labeled with 𝑥. 

● From a state, you can have 0,1, or many outgoing arrows labeled with a single 

character. You can choose any of them to build the required path. 



Problem 5 – NFAs
a) What language does the following NFA accept?

b) Create an NFA for the language “all binary strings that have a 1 as one of the last 
three digits”.

Work on this problem with the people around you.

q0start

q3 0

0

q1 q2

2

0ε

ε 1



Problem 5 – NFAs
a) What language does the following NFA accept?

q0start

q3 0

0

q1 q2

2

0ε

ε 1



Problem 5 – NFAs
a) What language does the following NFA accept?

q0start

q3 0

0

q1 q2

2

0ε

ε 1

All strings of only 0’s and 1’s, not containing more than one 1.



Problem 5 – NFAs
b) Create an NFA for the language “all binary strings that have a 1 as one of the last 

three digits”.



Problem 5 – NFAs
b) Create an NFA for the language “all binary strings that have a 1 as one of the last 

three digits”.

q0start

0,1

1
q1 q2 q3

0,1 0,1



That’s All, Folks!

Thanks for coming to section this week!
Any questions?
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