Section 08: Solutions

1. Regular Expressions

(a) Write a regular expression that matches base 10 numbers (e.g., there should be no leading zeroes).
 Solution:
 \[0 \cup ((1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)(0 \cup 1 \cup 2 \cup 3 \cup 4 \cup 5 \cup 6 \cup 7 \cup 8 \cup 9)^*)\]

(b) Write a regular expression that matches all base-3 numbers that are divisible by 3.
 Solution:
 \[0 \cup ((1 \cup 2)(0 \cup 1 \cup 2)^*0)\]

(c) Write a regular expression that matches all binary strings that contain the substring “111”, but not the substring “000”.
 Solution:
 \[(01 \cup 001 \cup 1^*)(0 \cup 00 \cup \varepsilon)111(01 \cup 001 \cup 1^*)(0 \cup 00 \cup \varepsilon)\]

(d) Write a regular expression that matches all binary strings that do not have any consecutive 0’s or 1’s.
 Solution:
 \[((01)^*(0 \cup \varepsilon)) \cup ((10)^*(1 \cup \varepsilon))\]

(e) Write a regular expression that matches all binary strings of the form \(1^k y\), where \(k \geq 1\) and \(y \in \{0, 1\}^*\) has at least \(k\) 1’s.
 Solution:
 \[1(0 \cup 1)^*1(0 \cup 1)^*\]

 Explanation: While it may seem like we need to keep track of how many 1’s there are, it turns out that we don’t. Convince yourself that strings in the language are exactly those of the form \(1x\), where \(x\) is any binary string with at least one 1. Hence, \(x\) is matched by the regular expression \((0 \cup 1)^*1(0 \cup 1)^*\).

2. CFGs

Write a context-free grammar to match each of these languages.

(a) All binary strings that end in 00.
 Solution:
3. Recursively Defined Sets of Strings

For each of the following, write a recursive definition of the sets satisfying the following properties. Briefly justify that your solution is correct.

(a) Binary strings of even length.

Solution:

Basis: $\varepsilon \in S$.
Recursive Step: If \(x \in S \), then \(x00, x01, x10, x11 \in S \).

Exclusion Rule: Each element of \(S \) is obtained from the basis and a finite number of applications of the recursive step.

“Brief” Justification: We will show that \(x \in S \) iff \(x \) has even length (i.e., \(|x| = 2n \) for some \(n \in \mathbb{N} \)). (Note: “brief” is in quotes here. Try to write shorter explanations in your homework assignment when possible!)

Suppose \(x \in S \). If \(x \) is the empty string, then it has length 0, which is even. Otherwise, \(x \) is built up from the empty string by repeated application of the recursive step, so it is of the form \(x_1x_2...x_n \), where each \(x_i \in \{00, 01, 10, 11\} \). In that case, we can see that \(|x| = |x_1| + |x_2| + ... + |x_n| = 2n \), which is even. Now, suppose that \(x \) has even length. If it’s length is zero, then it is the empty string, which is in \(S \). Otherwise, it has length \(2n \) for some \(n > 0 \), and we can write \(x \) in the form \(x_1x_2...x_n \), where each \(x_i \in \{00, 01, 10, 11\} \) has length 2. Hence, we can see that \(x \) can be built up from the empty string by applying the recursive step with \(x_1 \), then \(x_2 \), and so on up to \(x_n \), which shows that \(x \in S \).

(b) Binary strings not containing 10.

Solution:

If the string does not contain 10, then the first 1 in the string can only be followed by more 1s. Hence, it must be of the form \(0^m1^n \) for some \(m, n \in \mathbb{N} \).

Basis: \(\varepsilon \in S \).

Recursive Step: If \(x \in S \), then \(0x \in S \) and \(x1 \in S \).

Exclusion Rule: Each element of \(S \) is obtained from the basis and a finite number of applications of the recursive step.

Brief Justification: The empty string satisfies the property, and the recursive step cannot place a 0 after a 1 since it only adds 0s on the left. Hence, every string in \(S \) satisfies the property.

In the other direction, from our discussion above, any string of this form can be written as \(y = 0^m1^n \) for some \(m, n \in \mathbb{N} \). We can build up the string \(y \) from the empty string by applying the rule \(x \rightarrow 0x \) \(m \) times and then applying the rule \(x \rightarrow x1 \) \(n \) times. This shows that the string \(y \) is in \(S \).

(c) Binary strings not containing 10 as a substring and having at least as many 1s as 0s.

Solution:

These must be of the form \(0^m1^n \) for some \(m, n \in \mathbb{N} \) with \(m \leq n \). We can ensure that by pairing up the 0s with 1s as they are added:

Basis: \(\varepsilon \in S \).

Recursive Step: If \(x \in S \), then \(0x1 \in S \) and \(x1 \in S \).

Exclusion Rule: Each element of \(S \) is obtained from the basis and a finite number of applications of the recursive step.

Brief Justification: As in the previous part, we cannot add a 0 after a 1 because we only add 0s at the front. And since every 0 comes with a 1, we always have at least as many 1s as 0s.

In the other direction, from our discussion above, any string of this form can be written as \(xy \), where \(x = 0^m1^n \) and \(y = 1^{n-m} \), since \(n \geq m \). We can build up the string \(x \) from the empty string by applying the rule \(x \rightarrow 0x1 \) \(m \) times and then produce the string \(xy \) by applying the rule \(x \rightarrow x1 \) \(n-m \) times, which shows that the string is in \(S \).

(d) Binary strings containing at most two 0s and at most two 1s.
Solution:

This is the set of all binary strings of length at most 4 except for these:

000, 0100, 0010, 0001, 0000, 111, 0111, 1011, 1101, 1110, 1111

Since this is a finite set, we can define it recursively using only basis elements and no recursive step.

4. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c, X) is a string.

Recall the following recursive definition of the function len:

\[\text{len}("") = 0 \]
\[\text{len}(\text{append}(c, X)) = 1 + \text{len}(X) \]

Now, consider the following recursive definition:

\[\text{double}("") = "" \]
\[\text{double}(\text{append}(c, X)) = \text{append}(c, \text{append}(c, \text{double}(X))). \]

Prove that for any string X, \(\text{len}(\text{double}(X)) = 2 \cdot \text{len}(X) \).

Solution:

For a string X, let P(X) be \(\text{len}(\text{double}(X)) = 2 \cdot \text{len}(X) \). We prove P(X) for all strings X by structural induction on X.

Base Case \(X = "" \): By definition, \(\text{len}(\text{double}("")) = \text{len}("") = 0 = 2 \cdot 0 = 2 \cdot \text{len}("") \), so P("") holds.

Let Y be an arbitrary string not covered by the base cases. By the exclusion rule, Y = append(c, Z) for some character c and string Z.

Inductive Hypothesis: Suppose P(Z) holds for some string Z.

Inductive Step: Goal: Show that P(append(c, Z)) holds for any character c.

\[
\text{len}(\text{double}(\text{append}(c, Z))) = \text{len}(\text{append}(c, \text{append}(c, \text{double}(Z)))) \]
[By Definition of double]
\[
\quad = 1 + \text{len}(\text{append}(c, \text{double}(Z))) \]
[By Definition of len]
\[
\quad = 1 + 1 + \text{len}(\text{double}(Z)) \]
[By Definition of len]
\[
\quad = 2 + 2\text{len}(Z) \]
[By IH]
\[
\quad = 2(1 + \text{len}(Z)) \]
[Algebra]
\[
\quad = 2(2 \cdot \text{len}(X)) \]
[By Definition of len]

This proves P(append(c, Z)).

Conclusion: P(X) holds for all strings X by structural induction.

(b) Consider the following definition of a (binary) Tree:

Basis Step: ● is a Tree.

Recursive Step: If L is a Tree and R is a Tree then Tree(●, L, R) is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{align*}
\text{leaves}(\bullet) & = 1 \\
\text{leaves}(\text{Tree}(\bullet, L, R)) & = \text{leaves}(L) + \text{leaves}(R)
\end{align*}
$$

Also, recall the definition of size on trees:

$$
\begin{align*}
\text{size}(\bullet) & = 1 \\
\text{size}(\text{Tree}(\bullet, L, R)) & = 1 + \text{size}(L) + \text{size}(R)
\end{align*}
$$

Prove that $\text{leaves}(T) \geq \text{size}(T)/2 + 1/2$ for all Trees T.

Solution:

For a tree T, let P be $\text{leaves}(T) \geq \text{size}(T)/2 + 1/2$. We prove P for all trees T by structural induction on T.

Base Case ($T = \bullet$): By definition of $\text{leaves}(\bullet)$, $\text{leaves}(\bullet) = 1$ and $\text{size}(\bullet) = 1$. So, $\text{leaves}(\bullet) = 1 \geq 1/2 + 1/2 = \text{size}(\bullet)/2 + 1/2$, so $P(\bullet)$ holds.

Let Y be an arbitrary tree not covered by the base cases. By the exclusion rule, $Y = \text{Tree}(\bullet, L, R)$ for some trees L and R.

Inductive Hypothesis: Suppose $P(L)$ and $P(R)$ hold for some trees L, R.

Inductive Step: Goal: Show that $P(\text{Tree}(\bullet, L, R))$ holds.

$$
\begin{align*}
\text{leaves}(\text{Tree}(\bullet, L, R)) & = \text{leaves}(L) + \text{leaves}(R) & [\text{By Definition of leaves}] \\
& \geq (\text{size}(L)/2 + 1/2) + (\text{size}(R)/2 + 1/2) & [\text{By IH}] \\
& = (1/2 + \text{size}(L)/2 + \text{size}(R)/2) + 1/2 & [\text{By Algebra}] \\
& = 1 + \text{size}(L) + \text{size}(R) \over 2 + 1/2 & [\text{By Algebra}] \\
& = \text{size}(T)/2 + 1/2 & [\text{By Definition of size}]
\end{align*}
$$

This proves $P(\text{Tree}(\bullet, L, R))$.

Conclusion: Thus, $P(T)$ holds for all trees T by structural induction.

(c) Prove the previous claim using strong induction. Define $P(n)$ as “all trees T of size n satisfy $\text{leaves}(T) \geq \text{size}(T)/2 + 1/2$”. You may use the following facts:

- For any tree T we have $\text{size}(T) \geq 1$.
- For any tree T, $\text{size}(T) = 1$ if and only if $T = \bullet$.

If we wanted to prove these claims, we could do so by strong induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size $k + 1$.

Solution:

Let $P(n)$ be “all trees T of size n satisfy $\text{leaves}(T) \geq \text{size}(T)/2 + 1/2$”. We show $P(n)$ for all integers $n \geq 1$ by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1. The only tree with size 1 is \bullet, so $T = \bullet$. By definition, $\text{leaves}(T) = \text{leaves}(\bullet) = 1$ and thus $\text{size}(T) = 1 = 1/2 + 1/2 = \text{size}(T)/2 + 1/2$. This shows the base case holds.

Inductive Hypothesis: Suppose that $P(j)$ holds for all integers $j = 1, 2, \ldots, k$ for some arbitrary integer $k \geq 1$.

Inductive Step: Let T be an arbitrary tree of size $k + 1$. Since $k + 1 > 1$, we must have $T \neq \bullet$. It follows from the definition of a tree that $T = \text{Tree}(\bullet, L, R)$ for some trees L and R. By definition, we have $\text{size}(T) = 1 + \text{size}(L) + \text{size}(R)$. Since sizes are non-negative, this equation shows $\text{size}(T) > \text{size}(L)$ and $\text{size}(T) > \text{size}(R)$ meaning we can apply the inductive hypothesis. This says that $\text{leaves}(L) \geq \text{size}(L)/2 + 1/2$ and $\text{leaves}(R) \geq \text{size}(R)/2 + 1/2$.

We have,

$\text{leaves}(T) = \text{leaves}(\text{Tree}(\bullet, L, R))$

$= \text{leaves}(L) + \text{leaves}(R)$ [By Definition of leaves]

$\geq (\text{size}(L)/2 + 1/2) + (\text{size}(R)/2 + 1/2)$ [By IH]

$= (1/2 + \text{size}(L)/2 + \text{size}(R)/2) + 1/2$ [By Algebra]

$= 1 + \frac{\text{size}(L) + \text{size}(R)}{2} + 1/2$ [By Algebra]

$= \text{size}(T)/2 + 1/2$ [By Definition of size]

This shows $P(k + 1)$.

Conclusion: $P(n)$ holds for all integers $n \geq 1$ by the principle of strong induction.

Note, this proves the claim for all trees because every tree T has some size $s \geq 1$. Then $P(s)$ says that all trees of size s satisfy the claim, including T.

5. Reversing a Binary Tree

Consider the following definition of a (binary) Tree.

Basis Step Nil is a Tree.

Recursive Step If L is a Tree, R is a Tree, and x is an integer, then $\text{Tree}(x, L, R)$ is a Tree.

The sum function returns the sum of all elements in a Tree.

$\text{sum(Nil)} = 0$

$\text{sum(\text{Tree}(x, L, R))} = x + \text{sum}(L) + \text{sum}(R)$

The following recursively defined function produces the mirror image of a Tree.

$\text{reverse(Nil)} = \text{Nil}$

$\text{reverse(\text{Tree}(x, L, R))} = \text{Tree}(x, \text{reverse}(R), \text{reverse}(L))$

Show that, for all Trees T that

$\text{sum}(T) = \text{sum}(\text{reverse}(T))$

Solution:

For a Tree T, let $P(T)$ be “$\text{sum}(T) = \text{sum}(\text{reverse}(T))$”. We show $P(T)$ for all Trees T by structural induction.

Base Case: By definition we have $\text{reverse(Nil)} = \text{Nil}$. Applying sum to both sides we get $\text{sum(Nil)} = \text{sum(\text{reverse(Nil)})}$, which is exactly $P(\text{Nil})$, so the base case holds.

Let Y be an arbitrary tree not covered by the base cases. By the exclusion rule, $Y = \text{Tree}(x, L, R)$ for some integer x and trees L and R.

Inductive Hypothesis: Suppose $P(L)$ and $P(R)$ hold for some Trees L and R.

Inductive Step: Let x be an arbitrary integer. Goal: Show $P(\text{Tree}(x, L, R))$ holds.
We have,
\[
\sum(\text{reverse} (\text{Tree}(x, L, R))) = \sum(\text{Tree}(x, \text{reverse}(R), \text{reverse}(L))) \quad \text{[Definition of reverse]}
\]
\[
= x + \sum(\text{reverse}(R)) + \sum(\text{reverse}(L)) \quad \text{[Definition of sum]}
\]
\[
= x + \sum(R) + \sum(L) \quad \text{[Inductive Hypothesis]}
\]
\[
= x + \sum(L) + \sum(R) \quad \text{[Commutativity]}
\]
\[
= \sum(\text{Tree}(x, L, R)) \quad \text{[Definition of sum]}
\]

This shows \(P(\text{Tree}(x, L, R)) \).

Conclusion: Therefore, \(P(T) \) holds for all Trees \(T \) by structural induction.

6. Walk the Dawgs

Suppose a dog walker takes care of \(n \geq 12 \) dogs. The dog walker is not a strong person, and will walk dogs in groups of 3 or 7 at a time (every dog gets walked exactly once). Prove the dog walker can always split the \(n \) dogs into groups of 3 or 7.

Solution:

Let \(P(n) \) be “a group with \(n \) dogs can be split into groups of 3 or 7 dogs.” We will prove \(P(n) \) for all natural numbers \(n \geq 12 \) by strong induction.

Base Cases \(n = 12, 13, 14, \text{ or } 15: 12 = 3 + 3 + 3 + 3, 13 = 3 + 7 + 3, 14 = 7 + 7, \) So \(P(12), P(13), \) and \(P(14) \) hold.

Inductive Hypothesis: Assume that \(P(12), \ldots, P(k) \) hold for some arbitrary \(k \geq 14 \).

Inductive Step: Goal: Show \(k + 1 \) dogs can be split into groups of size 3 or 7.

We first form one group of 3 dogs. Then we can divide the remaining \(k-2 \) dogs into groups of 3 or 7 by the assumption \(P(k-2) \). (Note that \(k \geq 14 \) and so \(k-2 \geq 12 \); thus, \(P(k-2) \) is among our assumptions \(P(12), \ldots, P(k) \).)

Conclusion: \(P(n) \) holds for all integers \(n \geq 12 \) by by principle of strong induction.

7. For All

For this problem, we'll see an incorrect use of induction. For this problem, we'll think of all of the following as binary trees:

- A single node.
- A root node, with a left child that is the root of a binary tree (and no right child)
- A root node, with a right child that is the root of a binary tree (and no left child)
- A root node, with both left and right children that are roots of binary trees.

Let \(P(n) \) be “for all trees of height \(n \), the tree has an odd number of nodes”

Take a moment to realize this claim is false.

Now let’s see an incorrect proof:

We’ll prove \(P(n) \) for all \(n \in \mathbb{N} \) by induction on \(n \).

Base Case \((n = 0) \): There is only one tree of height 0, a single node. It has one node, and \(1 = 2 \cdot 0 + 1 \), which is an odd number of nodes.

Inductive Hypothesis: Suppose \(P(i) \) holds for \(i = 0, \ldots, k \), for some arbitrary \(k \geq 0 \).
Inductive Step: Let T be an arbitrary tree of height k. All trees with nodes (and since $k \geq 0$, T has at least one node) have a leaf node. Add a left child and right child to a leaf (pick arbitrarily if there’s more than one), This tree now has height $k + 1$ (since T was height k and we added children below). By IH, T had an odd number of nodes, call it $2j + 1$ for some integer j. Now we have added two more, so our new tree has $2j + 1 + 2 = 2(j + 1) + 1$ nodes. Since j was an integer, so is $j + 1$, and our new tree has an odd number of nodes, as required, so $P(k + 1)$ holds.

By the principle of induction, $P(n)$ holds for all $n \in \mathbb{N}$. Since every tree has an (integer) height of 0 or more, every tree is included in some $P()$, so the claim holds for all trees.

(a) What is the bug in the proof? **Solution:**

The proof, in trying to show something about an arbitrary of height $k + 1$, builds a particular tree of height $k + 1$, not an arbitrary one. While the tree built is indeed of height $k + 1$ and has an odd number of nodes, it is not an arbitrary tree of height $k + 1$.

Why is it that in this problem we have to start with $k + 1$, but we didn’t in the “Walk the Dawgs” problem above? “Walk the Dawgs” is asking you to prove an exists statement (“can split” not “for every possible split...”). When proving an exists, you just say “here’s how to do it”, you don’t need to introduce an arbitrary variable.

(b) What should the starting point and target of the IS be (you can’t write a full proof, as the claim is false). **Solution:**

“Let T be an arbitrary tree of height $k + 1$” should be the first sentence. “T has an odd number of nodes” is the target. Notice that the only difference

8. **Induction with Inequality**

Prove that $6n + 6 < 2^n$ for all $n \geq 6$. **Solution:**

Let $P(n)$ be “$6n + 6 < 2^n$”. We will prove $P(n)$ for all integers $n \geq 6$ by induction on n

Base Case ($n = 6$): $6 \cdot 6 + 6 = 42 < 64 = 2^6$, so $P(6)$ holds.

Inductive Hypothesis: Assume that $6k + 6 < 2^k$ for an arbitrary integer $k \geq 6$.

Inductive Step:

<table>
<thead>
<tr>
<th>Goal: Show $6(k + 1) + 6 < 2^{k+1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$6(k + 1) + 6 = 6k + 6 + 6$</td>
</tr>
<tr>
<td>$< 2^k + 6$</td>
</tr>
<tr>
<td>$< 2^k + 2^k$</td>
</tr>
<tr>
<td>$= 2 \cdot 2^k$</td>
</tr>
<tr>
<td>$= 2^{k+1}$</td>
</tr>
</tbody>
</table>

So $P(k) \rightarrow P(k + 1)$ for an arbitrary integer $k \geq 6$.

Conclusion: $P(n)$ holds for all integers $n \geq 6$ by the principle of induction.

9. **Induction with Formulas**

These problems are a little more difficult and abstract. Try making sure you can do all the other problems before trying these ones.
(a) (i) Show that given two sets \(A \) and \(B \) that \(A \cup B = \overline{A} \cap \overline{B} \). (Don’t use induction.)

Solution:

Let \(x \) be arbitrary. Then,
\[
\begin{align*}
x \in A \cup B & \equiv \neg(x \in A \cup B) \\
& \equiv \neg(x \in A \lor x \in B) \quad \text{[Definition of union]} \\
& \equiv \neg(x \in A) \land \neg(x \in B) \quad \text{[De Morgan’s Laws]} \\
& \equiv x \in \overline{A} \land x \in \overline{B} \quad \text{[Definition of complement]} \\
& \equiv x \in (\overline{A} \cap \overline{B}) \quad \text{[Definition of intersection]}
\end{align*}
\]
Since \(x \) was arbitrary we have that \(x \in A \cup B \) if and only if \(x \in \overline{A} \cap \overline{B} \) for all \(x \). By the definition of set equality we’ve shown, \(A \cup B = \overline{A} \cap \overline{B} \).

(ii) Show using induction that for an integer \(n \geq 2 \), given \(n \) sets \(A_1, A_2, \ldots, A_{n-1}, A_n \) that
\[
A_1 \cup A_2 \cup \cdots \cup A_{n-1} \cup A_n = \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_{n-1}} \cap \overline{A_n}
\]

Solution:

Let \(P(n) \) be “given \(n \) sets \(A_1, A_2, \ldots, A_{n-1}, A_n \) it holds that \(\overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_n} = \overline{A_1 \cap A_2 \cap \cdots \cap A_{n-1} \cap A_n} \)”.

Base Case: \(P(2) \) says that for two sets \(A_1 \) and \(A_2 \) that \(\overline{A_1 \cup A_2} = \overline{A_1} \cap \overline{A_2} \), which is exactly part (a) so \(P(2) \) holds.

Inductive Hypothesis: Suppose that \(P(k) \) holds for some arbitrary integer \(k \geq 2 \).

Inductive Step: Let \(A_1, A_2, \ldots, A_k, A_{k+1} \) be sets. Then by part (a) we have,
\[
\overline{(A_1 \cup A_2 \cup \cdots \cup A_k) \cup A_{k+1}} = \overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_k} \cap \overline{A_{k+1}}.
\]

By the inductive hypothesis we have \(A_1 \cup A_2 \cup \cdots \cup A_k = \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_k} \). Thus,
\[
\overline{A_1} \cup \overline{A_2} \cup \cdots \cup \overline{A_k} \cap \overline{A_{k+1}} = (\overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_k}) \cap \overline{A_{k+1}}.
\]

We’ve now shown
\[
A_1 \cup A_2 \cup \cdots \cup A_k \cup A_{k+1} = \overline{A_1 \cap A_2 \cap \cdots \cap A_k} \cap \overline{A_{k+1}}.
\]

which is exactly \(P(k+1) \).

Conclusion \(P(n) \) holds for all integers \(n \geq 2 \) by the principle of induction.

(b) (i) Show that given any integers \(a, b, \) and \(c \), if \(c \mid a \) and \(c \mid b \) then \(c \mid (a + b) \). (Don’t use induction.)

Solution:

Let \(a, b, \) and \(c \) be arbitrary integers and suppose that \(c \mid a \) and \(c \mid b \). Then by definition there exist integers \(j \) and \(k \) such that \(a = jc \) and \(b = kc \). Then \(a + b = jc + kc = (j + k)c \). Since \(j + k \) is an integer, by definition we have \(c \mid (a + b) \).
(ii) Show using induction that for any integer \(n \geq 2 \), given \(n \) numbers \(a_1, a_2, \ldots, a_{n-1}, a_n \), for any integer \(c \) such that \(c \mid a_i \) for \(i = 1, 2, \ldots, n \), that
\[
c \mid (a_1 + a_2 + \cdots + a_{n-1} + a_n).
\]

In other words, if a number divides each term in a sum then that number divides the sum.

Solution:

Let \(P(n) \) be “given \(n \) numbers \(a_1, a_2, \ldots, a_{n-1}, a_n \), for any integer \(c \) such that \(c \mid a_i \) for \(i = 1, 2, \ldots, n \), it holds that \(c \mid (a_1 + a_2 + \cdots + a_n) \).” We show \(P(n) \) holds for all integer \(n \geq 2 \) by induction on \(n \).

Base Case: \(P(2) \) says that given two integers \(a_1 \) and \(a_2 \), for any integer \(c \) such that \(c \mid a_1 \) and \(c \mid a_2 \) it holds that \(c \mid (a_1 + a_2) \). This is exactly part (a) so \(P(2) \) holds.

Inductive Hypothesis: Suppose that \(P(k) \) holds for some arbitrary integer \(k \geq 2 \).

Inductive Step: Let \(a_1, a_2, \ldots, a_k, a_{k+1} \) be \(k+1 \) integers. Let \(c \) be arbitrary and suppose that \(c \mid a_i \) for \(i = 1, 2, \ldots, k+1 \). Then we can write
\[
a_1 + a_2 + \cdots + a_k + a_{k+1} = (a_1 + a_2 + \cdots + a_k) + a_{k+1}.
\]

The sum \(a_1 + a_2 + \cdots + a_k \) has \(k \) terms and \(c \) divides all of them, meaning we can apply the inductive hypothesis. It says that \(c \mid (a_1 + a_2 + \cdots + a_k) \). Since \(c \mid (a_1 + a_2 + \cdots + a_k) \) and \(c \mid a_{k+1} \), by part (a) we have,
\[
c \mid (a_1 + a_2 + \cdots + a_k + a_{k+1}).
\]

This shows \(P(k+1) \).

Conclusion: \(P(n) \) holds for all integers \(n \geq 2 \) by induction the principle of induction.