CSE 311 Section 6

Induction
Administrivia
Announcements & Reminders

● HW4
 ○ Grades out now
 ○ If you think something was graded incorrectly, submit a regrade request!

● HW5 (BOTH PARTS)
 ○ BOTH PARTS due Wednesday 10/8 @ 10pm

● Midterm is Coming!!!
 ○ Wednesday 10/15 @ 6-7:30 pm in BAG 131 and 154
 ○ If you cannot make it, please let us know ASAP and we will schedule you for a makeup
Induction
(Weak) Induction Template

Let $P(n)$ be “(whatever you’re trying to prove)”. We show $P(n)$ holds for all n by induction on n.

Base Case: Show $P(b)$ is true.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k + 1)$ (i.e. get $P(k) \rightarrow P(k + 1)$)

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.
(Weak) Induction Template

Let $P(n)$ be “(whatever you’re trying to prove)”. We show $P(n)$ holds for all n by induction on n.

Base Case: Show $P(b)$ is true.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Show $P(k + 1)$ (i.e. get $P(k) \rightarrow P(k + 1)$)

Conclusion: Therefore, $P(n)$ holds for all n by the principle of induction.

Note: often you will condition n here, like “all natural numbers n” or “$n \geq 0$”

Match the earlier condition on n in your conclusion!
Problem 1 – Induction with Equality

a) Show using induction that \(0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}\) for all \(n \in \mathbb{N}\).

b) Define the triangle numbers as \(\triangle_n = 1 + 2 + \cdots + n\), where \(n \in \mathbb{N}\). In part (a) we showed \(\triangle_n = \frac{n(n+1)}{2}\). Prove the following equality for all \(n \in \mathbb{N}\):

\[
0^3 + 1^3 + \cdots + n^3 = \triangle_n^2
\]

Let's walk through part (a) together.

We can “fill in” our induction template to construct our proof by induction.
Problem 1 – Induction with Equality

Show using induction that

\[0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \]

for all \(n \in \mathbb{N} \).

Let \(P(n) \) be “”. We show \(P(n) \) holds for (some) \(n \) by induction on \(n \).

Base Case: \(P(b) \):

Inductive Hypothesis: Suppose \(P(k) \) holds for an arbitrary \(k \geq b \).

Inductive Step: Goal: Show \(P(k + 1) \):

Conclusion: Therefore, \(P(n) \) holds for (some) \(n \) by the principle of induction.
Problem 1 – Induction with Equality

Let $P(n)$ be “$0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$”. We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(b)$:

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Goal: Show $P(k + 1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

Show using induction that $0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

Let $P(n)$ be "$0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$". We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(0)$: $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Goal: Show $P(k + 1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

Let $P(n)$ be “$0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$”. We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(0)$: $0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

Inductive Step: Goal: Show $P(k + 1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

Let \(P(n) \) be “\(0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \)”. We show \(P(n) \) holds for all \(n \in \mathbb{N} \) by induction on \(n \).

Base Case: \(P(0) \): \(0 + \cdots = 0 = \frac{0(0+1)}{2} \) so the base case holds.

Inductive Hypothesis: Suppose \(P(k) \) holds for an arbitrary \(k \geq 0 \), i.e. \(0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2} \).

Inductive Step: Goal: Show \(P(k + 1) \): \(0 + 1 + \cdots + k + (k + 1) = \frac{(k+1)(k+2)}{2} \)

Conclusion: Therefore, \(P(n) \) holds for all \(n \in \mathbb{N} \) by the principle of induction.
Problem 1 – Induction with Equality

Let $P(n)$ be “$0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$”. We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(0)$: $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

Inductive Step: Goal: Show $P(k + 1)$: $0 + 1 + \cdots + k + (k + 1) = \frac{(k+1)(k+2)}{2}$

$0 + 1 + \cdots + k + (k + 1) = \cdots$

\[\cdots = \frac{(k+1)(k+2)}{2} \]

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

Let $P(n)$ be “$0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$”. We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(0)$: $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

Inductive Step: Goal: Show $P(k + 1)$: $0 + 1 + \cdots + k + (k + 1) = \frac{(k+1)(k+2)}{2}$

$0 + 1 + \cdots + k + (k + 1) = (0 + 1 + \cdots + k) + (k + 1)$

...

$= \frac{(k+1)(k+2)}{2}$?

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

Show using induction that

\[0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \]

for all \(n \in \mathbb{N} \).

Let \(P(n) \) be “\(0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2} \)”. We show \(P(n) \) holds for all \(n \in \mathbb{N} \) by induction on \(n \).

Base Case: \(P(0) \): \(0 + \cdots = 0 = \frac{0(0+1)}{2} \) so the base case holds.

Inductive Hypothesis: Suppose \(P(k) \) holds for an arbitrary \(k \geq 0 \), i.e. \(0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2} \)

Inductive Step: Goal: Show \(P(k+1) \): \(0 + 1 + \cdots + k + (k + 1) = \frac{(k+1)(k+2)}{2} \)

\[
0 + 1 + \cdots + k + (k + 1) = (0 + 1 + \cdots + k) + (k + 1) \\
= \frac{k(k+1)}{2} + (k + 1) \quad \text{by I.H.} \\
\ldots \\
= \frac{(k+1)(k+2)}{2}
\]

Conclusion: Therefore, \(P(n) \) holds for all \(n \in \mathbb{N} \) by the principle of induction.
Show using induction that
\[
0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}
\]
for all \(n \in \mathbb{N}\).

Let \(P(n)\) be “\(0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}\)”. We show \(P(n)\) holds for all \(n \in \mathbb{N}\) by induction on \(n\).

Base Case: \(P(0)\):
\[
0 + \cdots = 0 = \frac{0(0+1)}{2} \quad \text{so the base case holds.}
\]

Inductive Hypothesis: Suppose \(P(k)\) holds for an arbitrary \(k \geq 0\), i.e.
\[
0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}
\]

Inductive Step: Goal: Show \(P(k + 1)\):
\[
0 + 1 + \cdots + k + (k + 1) = \frac{(k+1)(k+2)}{2}
\]

\[
0 + 1 + \cdots + k + (k + 1) = (0 + 1 + \cdots + k) + (k + 1)
= \frac{k(k+1)}{2} + (k + 1) \quad \text{by l.H.}
= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}
= \frac{(k+1)(k+2)}{2}
\]

Conclusion: Therefore, \(P(n)\) holds for all \(n \in \mathbb{N}\) by the principle of induction.
Problem 1 – Induction with Equality

Let $P(n)$ be “$0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$”. We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(0)$: $0 + \cdots = 0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$.

Inductive Step: Goal: Show $P(k + 1)$: $0 + 1 + \cdots + k + (k + 1) = \frac{(k+1)(k+2)}{2}$

\[
0 + 1 + \cdots + k + (k + 1) = (0 + 1 + \cdots + k) + (k + 1)
\]
\[
= \frac{k(k+1)}{2} + (k + 1)
\]
\[
= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}
\]
\[
= \frac{k(k+1)+2(k+1)}{2}
\]
\[
= \frac{(k+1)(k+2)}{2}
\]

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

Let $P(n)$ be “$0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$”. We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(0)$: $0 = \frac{0(0+1)}{2}$ so the base case holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$, i.e. $0 + 1 + 2 + \cdots + k = \frac{k(k+1)}{2}$

Inductive Step: Goal: Show $P(k+1)$: $0 + 1 + \cdots + k + (k+1) = \frac{(k+1)(k+2)}{2}$

\[
0 + 1 + \cdots + k + (k+1) = (0 + 1 + \cdots + k) + (k+1)
= \frac{k(k+1)}{2} + (k+1) \\
= \frac{k(k+1) + 2(k+1)}{2} \\
= \frac{(k+1)(k+2)}{2}
\]

by I.H.

factoring out $(k+1)$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

a) Show using induction that $0 + 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$ for all $n \in \mathbb{N}$.

b) Define the triangle numbers as $\triangle_n = 1 + 2 + \cdots + n$, where $n \in \mathbb{N}$. In part (a) we showed $\triangle_n = \frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$0^3 + 1^3 + \cdots + n^3 = \triangle_n^2$$

Now try part (b) with people around you, and then we’ll go over it together!
Problem 1 – Induction with Equality

Let $P(n)$ be “”. We show $P(n)$ holds for (some) n by induction on n.

Base Case: $P(b)$:

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Goal: Show $P(k + 1)$:

Conclusion: Therefore, $P(n)$ holds for (some) n by the principle of induction.

\[
\begin{align*}
\triangle_n &= 1 + 2 + \cdots + n, \ n \in \mathbb{N}.
\triangle_n &= \frac{n(n+1)}{2}. \text{ Prove for all } n \in \mathbb{N}:
0^3 + 1^3 + \cdots + n^3 &= \triangle_n^2
\end{align*}
\]
Problem 1 – Induction with Equality

Let $P(n)$ be “$0^3 + 1^3 + \cdots + n^3 = (0 + 1 + \cdots + n)^2$”. We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(b)$:

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Goal: Show $P(k + 1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

Let $P(n)$ be “$0^3 + 1^3 + \cdots + n^3 = (0 + 1 + \cdots + n)^2$”. We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(0)$: $0^3 = 0 = (0)^2$ so the base case holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq b$.

Inductive Step: Goal: Show $P(k + 1)$:

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

Let \(P(n) \) be “\(0^3 + 1^3 + \cdots + n^3 = (0 + 1 + \cdots + n)^2 \)”. We show \(P(n) \) holds for all \(n \in \mathbb{N} \) by induction on \(n \).

Base Case: \(P(0) \): \(0^3 = 0 = (0)^2 \) so the base case holds.

Inductive Hypothesis: Suppose \(P(k) \) holds for an arbitrary \(k \geq 0 \). i.e. \(0^3 + 1^3 + \cdots + k^3 = (0 + 1 + \cdots + k)^2 \)

Inductive Step: Goal: Show \(P(k + 1) \):

Conclusion: Therefore, \(P(n) \) holds for all \(n \in \mathbb{N} \) by the principle of induction.
Let $P(n)$ be \(0^3 + 1^3 + \cdots + n^3 = (0 + 1 + \cdots + n)^2\). We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(0)$: $0^3 = 0 = (0)^2$ so the base case holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. $0^3 + 1^3 + \cdots + k^3 = (0 + 1 + \cdots + k)^2$

Inductive Step: Goal: Show $P(k + 1)$: $0^3 + 1^3 + \cdots + k^3 + (k + 1)^3 = (0 + 1 + \cdots + k + (k + 1))^2$

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

Let $P(n)$ be \(0^3 + 1^3 + \cdots + n^3 = (0 + 1 + \cdots + n)^2\). We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(0)$: $0^3 = 0 = (0)^2$ so the base case holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. \(0^3 + 1^3 + \cdots + k^3 = (0 + 1 + \cdots + k)^2\)

Inductive Step: Goal: Show $P(k + 1)$:
\[0^3 + 1^3 + \cdots + k^3 + (k + 1)^3 = (0 + 1 + \cdots + k + (k + 1))^2\]

\[0^3 + 1^3 + \cdots + k^3 + (k + 1)^3 = \cdots\]
\[\cdots = (0 + 1 + \cdots + k + (k + 1))^2\]

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Problem 1 – Induction with Equality

Let $P(n)$ be “$0^3 + 1^3 + \cdots + n^3 = (0 + 1 + \cdots + n)^2$”. We show $P(n)$ holds for all $n \in \mathbb{N}$ by induction on n.

Base Case: $P(0)$: $0^3 = 0 = (0)^2$ so the base case holds.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$. i.e. $0^3 + 1^3 + \cdots + k^3 = (0 + 1 + \cdots + k)^2$

Inductive Step: Goal: Show $P(k + 1)$: $0^3 + 1^3 + \cdots + k^3 + (k + 1)^3 = (0 + 1 + \cdots + k + (k + 1))^2$

$0^3 + 1^3 + \cdots + k^3 + (k + 1)^3 = (0 + 1 + \cdots + k)^2 + (k + 1)^3$ by I.H.

$= \left(\frac{k(k+1)}{2} \right)^2 + (k + 1)^3$ by (a)

$= (k + 1)^2 \left(\frac{k^2}{2^2} + (k + 1) \right)$ factor out $(k + 1)^2$

$= (k + 1)^2 \left(\frac{k^2 + 4k + 4}{4} \right)$

$= (k + 1)^2 \left(\frac{(k+2)^2}{4} \right)$ factor numerator

$= \left(\frac{(k+1)(k+2)}{2} \right)^2$

$= (0 + 1 + \cdots + k + (k + 1))^2$ by (a)

Conclusion: Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by the principle of induction.
Strong Induction
Why Strong Induction?

In **weak induction**, the inductive hypothesis only assumes that $P(k)$ is true and uses that in the inductive step to prove the implication $P(k) \rightarrow P(k + 1)$.

In **strong induction**, the inductive hypothesis assumes the predicate holds for every step from the base case(s) up to $P(k)$. This usually looks something like $P(b_1) \land P(b_2) \land \cdots \land P(k)$. Then it uses this stronger inductive hypothesis in the inductive step to prove the implication $P(b_1) \land \cdots \land P(k) \rightarrow P(k + 1)$.

Strong induction is necessary when we have multiple base cases, or when we need to go back to a smaller number than k in our inductive step.
Strong Induction Template

Let $P(n)$ be “(whatever you’re trying to prove)”. We show $P(n)$ holds for all $n \geq b_{\text{min}}$ by induction on n.

Base Case: Show $P(b_{\text{min}}), P(b_{\text{min}}+1), \ldots, P(b_{\text{max}})$ are all true.

Inductive Hypothesis: Suppose $P(b_{\text{min}}) \land \ldots \land P(k)$ hold for an arbitrary $k \geq b_{\text{max}}$.

Inductive Step: Show $P(k + 1)$ (i.e. get $P(b_{\text{min}}) \land \ldots \land P(k) \rightarrow P(k + 1)$)

Conclusion: Therefore, $P(n)$ holds for all $n \geq b_{\text{min}}$ by the principle of induction.
Problem 4 – Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f:

\[
\begin{align*}
f(0) &= 0 \\
f(1) &= 1 \\
f(n) &= 2f(n-1) - f(n-2) \text{ for } n \geq 2
\end{align*}
\]

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

First, let’s construct a formula for $f(n)$. How many rabbits does he have each year? Let’s do some calculations, and see if we can find a pattern. Then, we’ll use induction to prove the pattern holds for all n!
Problem 4 – Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f:

\begin{align*}
f(0) &= 0 \\
f(1) &= 1 \\
f(n) &= 2f(n - 1) - f(n - 2) \text{ for } n \geq 2
\end{align*}

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.
Problem 4 – Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f:

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(n) &= 2f(n - 1) - f(n - 2) \quad \text{for } n \geq 2
\end{align*}
\]

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1
\end{align*}
\]
Problem 4 – Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f:

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(n) &= 2f(n-1) - f(n-2) \text{ for } n \geq 2
\end{align*}
\]

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(2) &= 2f(2-1) - f(2-2) = 2f(1) - f(0) = 2(1) - 0 = 2 - 0 = 2
\end{align*}
\]
Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f:

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(n) &= 2f(n - 1) - f(n - 2) \quad \text{for } n \geq 2
\end{align*}
\]

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(2) &= 2f(2 - 1) - f(2 - 2) = 2f(1) - f(0) = 2(1) - 0 = 2 - 0 = 2 \\
 f(3) &= 2f(3 - 1) - f(3 - 2) = 2f(2) - f(1) = 2(2) - 1 = 4 - 1 = 3
\end{align*}
\]
Problem 4 – Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function \(f \):

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(n) &= 2f(n-1) - f(n-2) \text{ for } n \geq 2
\end{align*}
\]

Determine, with proof, the number, \(f(n) \), of rabbits that Cantelli owns in year \(n \). That is, construct a formula for \(f(n) \) and prove its correctness.

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(2) &= 2f(2-1) - f(2-2) = 2f(1) - f(0) = 2(1) - 0 = 2 - 0 = 2 \\
 f(3) &= 2f(3-1) - f(3-2) = 2f(2) - f(1) = 2(2) - 1 = 4 - 1 = 3 \\
 f(4) &= 2f(4-1) - f(4-2) = 2f(3) - f(2) = 2(3) - 2 = 6 - 2 = 4
\end{align*}
\]
Problem 4 – Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f:

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(n) &= 2f(n-1) - f(n-2) \text{ for } n \geq 2
\end{align*}
\]

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

\[
\begin{align*}
 f(0) &= 0 \\
 f(1) &= 1 \\
 f(2) &= 2f(2-1) - f(2-2) = 2f(1) - f(0) = 2(1) - 0 = 2 - 0 = 2 \\
 f(3) &= 2f(3-1) - f(3-2) = 2f(2) - f(1) = 2(2) - 1 = 4 - 1 = 3 \\
 f(4) &= 2f(4-1) - f(4-2) = 2f(3) - f(2) = 2(3) - 2 = 6 - 2 = 4
\end{align*}
\]

It seems like we have a pattern here!

\[f(n) = n \]

But we don’t want to have to check for EVERY n, so let’s see if we can prove it with induction instead!
Problem 4 – Cantelli’s Rabbits

What kind of induction should we use?
Problem 4 – Cantelli’s Rabbits

What kind of induction should we use?

Strong induction!
Problem 4 – Cantelli’s Rabbits

What kind of induction should we use?

Strong induction!

Two big clues:
- Multiple base cases in the formula: $f(0) = 0$ and $f(1) = 1$
- Recursively defined step of formula goes back further than just n:
 - $f(n)$ based on both $f(n - 1)$ and $f(n - 2)$
 - For $P(n)$ to be true, both $P(n - 1)$ and $P(n - 2)$ must be true
Problem 4 – Cantelli’s Rabbits

Let $P(n)$ be “(whatever you’re trying to prove)”. We show $P(n)$ holds for all $n \geq b_{min}$ by induction on n.

Base Case: Show $P(b_{min})$, $P(b_{min}+1)$, ..., $P(b_{max})$ are all true.

Inductive Hypothesis: Suppose $P(b_{min}) \land \cdots \land P(k)$ hold for an arbitrary $k \geq b_{max}$.

Inductive Step: Show $P(k + 1)$ (i.e. get $P(b_{min}) \land \cdots \land P(k) \rightarrow P(k + 1)$)

Conclusion: Therefore, $P(n)$ holds for all $n \geq b_{min}$ by the principle of induction.

Fill in the strong induction template to prove the claim!
Problem 4 – Cantelli’s Rabbits

Let $P(n)$ be “”. We show $P(n)$ holds …

Base Cases:

Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, $P(n)$ holds for all … by the principle of induction.
Problem 4 – Cantelli’s Rabbits

Let $P(n)$ be “$f(n) = n$”.
We show $P(n)$ holds for all $n \geq 0$ by induction on n.

Base Cases:
Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.
Problem 4 – Cantelli’s Rabbits

Let $P(n)$ be “$f(n) = n$”.
We show $P(n)$ holds for all $n \geq 0$ by induction on n.

Base Cases: $(n = 0, n = 1)$: $f(0) = 0$ and $f(1) = 1$ by definition of f.

Inductive Hypothesis:

Inductive Step:

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.
Problem 4 – Cantelli’s Rabbits

Let $P(n)$ be “$f(n) = n$”.
We show $P(n)$ holds for all $n \geq 0$ by induction on n.

Base Cases: $(n = 0, n = 1): f(0) = 0$ and $f(1) = 1$ by definition of f.

Inductive Hypothesis: Suppose $P(0) \land P(1) \land \cdots \land P(k)$ hold for an arbitrary all $k \geq 1$.

Inductive Step:

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.
Let $P(n)$ be “$f(n) = n$”.

We show $P(n)$ holds for all $n \geq 0$ by induction on n.

Base Cases: $(n = 0, n = 1)$: $f(0) = 0$ and $f(1) = 1$ by definition of f.

Inductive Hypothesis: Suppose $P(0) \land P(1) \land \cdots \land P(k)$ hold for an arbitrary all $k \geq 1$.

i.e. $f(k) = k$, $f(k - 1) = k - 1$, $f(k - 2) = k - 2$, etc.

Inductive Step:

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.
Let $P(n)$ be “$f(n) = n$”.

We show $P(n)$ holds for all $n \geq 0$ by induction on n.

Base Cases: $(n = 0, n = 1)$: $f(0) = 0$ and $f(1) = 1$ by definition of f.

Inductive Hypothesis: Suppose $P(0) \land P(1) \land \cdots \land P(k)$ hold for an arbitrary all $k \geq 1$.

i.e. $f(k) = k$, $f(k - 1) = k - 1$, $f(k - 2) = k - 2$, etc.

Inductive Step: Goal: Show $P(k + 1)$: $f(k + 1) = k + 1$

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.
Problem 4 – Cantelli’s Rabbits

Let $P(n)$ be “$f(n) = n$”.

We show $P(n)$ holds for all $n \geq 0$ by induction on n.

Base Cases: $(n = 0, n = 1)$: $f(0) = 0$ and $f(1) = 1$ by definition of f.

Inductive Hypothesis: Suppose $P(0) \land P(1) \land \cdots \land P(k)$ hold for an arbitrary all $k \geq 1$.

i.e. $f(k) = k$, $f(k - 1) = k - 1$, $f(k - 2) = k - 2$, etc.

Inductive Step: Goal: Show $P(k + 1)$: $f(k + 1) = k + 1$

\[f(k + 1) = \ldots \]
\[\ldots \]
\[= k + 1 \]

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.
Problem 4 – Cantelli’s Rabbits

Let $P(n)$ be “$f(n) = n$”.

We show $P(n)$ holds for all $n \geq 0$ by induction on n.

Base Cases: $(n = 0, n = 1)$: $f(0) = 0$ and $f(1) = 1$ by definition of f.

Inductive Hypothesis: Suppose $P(0) \land P(1) \land \cdots \land P(k)$ hold for an arbitrary all $k \geq 1$.

i.e. $f(k) = k, f(k - 1) = k - 1, f(k - 2) = k - 2$, etc.

Inductive Step: Goal: Show $P(k + 1): f(k + 1) = k + 1$

\[
f(k + 1) = 2f(k) - f(k - 1) \quad \text{definition of } f
\]

\[
\cdots
\]

\[
= k + 1
\]

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.
Problem 4 – Cantelli’s Rabbits

Let $P(n)$ be "$f(n) = n$".

We show $P(n)$ holds for all $n \geq 0$ by induction on n.

Base Cases: $(n = 0, n = 1)$: $f(0) = 0$ and $f(1) = 1$ by definition of f.

Inductive Hypothesis: Suppose $P(0) \land P(1) \land \ldots \land P(k)$ hold for an arbitrary all $k \geq 1$.

i.e. $f(k) = k$, $f(k - 1) = k - 1$, $f(k - 2) = k - 2$, etc.

Inductive Step: Goal: Show $P(k + 1)$: $f(k + 1) = k + 1$

\[
f(k + 1) = 2f(k) - f(k - 1) \quad \text{definition of } f
\]
\[
= 2(k) - (k - 1) \quad \text{by I.H.}
\]
\[
= k + 1
\]

Conclusion: Therefore, $P(n)$ holds for all $n \geq 0$ by the principle of induction.
That’s All, Folks!

Thanks for coming to section this week!
Any questions?