Administrivia
Announcements & Reminders

- HW3
 - If you think something was graded incorrectly, submit a regrade request!

- HW4 due tomorrow 10PM on Gradescope
 - Use late days if you need them!

- HW5
 - 2 parts!
 - BOTH PARTS due Wednesday 11/8 @ 10pm
 - You have extra time on this homework (1.5 weeks)
Greatest Common Divisor
Some Definitions

- Greatest Common Divisor (GCD):
 - The Greatest Common Divisor of a and b (gcd(a, b)) is the largest integer c such that $c | a$ and $c | b$

- Multiplicative Inverse:
 - The multiplicative inverse of a (mod n) is an integer b such that $ab \equiv 1$ (mod n)
Problem 1 – Warm-Up

a) Calculate $\gcd(100, 50)$.

b) Calculate $\gcd(17, 31)$

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

Try this problem with the people around you, and then we’ll go over it together!
Problem 1 – Warm-Up

a) Calculate $\gcd(100, 50)$.

b) Calculate $\gcd(17, 31)$

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?
Problem 1 – Warm-Up

a) Calculate \(\gcd(100, 50) \).

\[
50
\]

b) Calculate \(\gcd(17, 31) \)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?
Problem 1 – Warm-Up

a) Calculate \(\gcd(100, 50) \).

\[
50
\]

b) Calculate \(\gcd(17, 31) \).

\[
1
\]

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?
Problem 1 – Warm-Up

a) Calculate $\gcd(100, 50)$.
 50
b) Calculate $\gcd(17, 31)$
 1
c) Find the multiplicative inverse of 6 (mod 7).
 6
d) Does 49 have a multiplicative inverse (mod 7)?
Problem 1 – Warm-Up

a) Calculate $\gcd(100, 50)$.

50

b) Calculate $\gcd(17, 31)$

1

c) Find the multiplicative inverse of 6 (mod 7).

6

d) Does 49 have a multiplicative inverse (mod 7)?

It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7, which means it can never be 1.
Extended Euclidean Algorithm
Finding GCD

GCD Facts:
If a and b are positive integers, then:

\[
gcd(a, b) = gcd(b, a \% b) \]

\[
gcd(a, 0) = a \]

public int GCD(int m, int n){
 if(m<n){
 int temp = m;
 m=n;
 n=temp;
 }
 while(n != 0) {
 int rem = m % n;
 m=n;
 n=temp;
 }
 return m;
}
Euclid’s Algorithm

gcd(660, 126)
Euclid’s Algorithm

\[\text{gcd}(a, b) = \text{gcd}(b, a \% b) \]

\[\text{gcd}(660, 126) = \text{gcd}(126, 660 \% 126) = \text{gcd}(126, 30) \]
Euclid’s Algorithm

\[\text{gcd}(660, 126) = \text{gcd}(126, 660 \% 126) = \text{gcd}(126, 30) = \text{gcd}(30, 6) \]

\[\text{gcd}(a, b) = \text{gcd}(b, a \% b) \]
Euclid’s Algorithm

\[
gcd(660, 126) = gcd(126, 660 \% 126) = \gcd(126, 30) = \gcd(30, 6) = \gcd(6, 0)
\]
Euclid’s Algorithm

\[
gcd(660, 126) = gcd(126, 660 \% 126) = gcd(126, 30) = gcd(30, 6) = gcd(6, 0) = 6
\]

\[
gcd(a, b) = gcd(b, a \% b)
\]
Euclid’s Algorithm

\[\text{gcd}(660, 126) = \text{gcd}(126, 660 \% 126) = \text{gcd}(126, 30) = \text{gcd}(30, 6) = 6 \]

Tableau form

\[
\begin{align*}
660 &= 5 \cdot 126 + 30 \\
126 &= 4 \cdot 30 + 6 \\
30 &= 5 \cdot 6 + 0
\end{align*}
\]
Bézout's Theorem

- Bézout’s Theorem:
 - If a and b are positive integers, then there exist integers s and t such that
 \[\gcd(a, b) = sa + tb \]

- We’re not going to prove this theorem in section though, because it’s hard and ugly
Extended Euclidean Algorithm

Bézout’s Theorem tells us that \(\gcd(a, b) = sa + tb \).

To find the \(s, t \) we can use the Extended Euclidean Algorithm.

- Step 1: compute \(\gcd(a, b) \); keep tableau information
- Step 2: solve all equations for the remainder
- Step 3: substitute backward
Extended Euclidean Algorithm

gcd(35,27)

- Compute $gcd(a, b)$; keep tableau information
- Solve all equations for the remainder
- Substitute backward
Extended Euclidean Algorithm

\[\gcd(35, 27) = \gcd(27, 35 \mod 27) = \gcd(27, 8) \]

- Compute \(\gcd(a, b) \); keep tableau information
- Solve all equations for the remainder
- Substitute backward
Extended Euclidean Algorithm

\[\text{gcd}(35, 27) = \text{gcd}(27, 35 \mod 27) = \text{gcd}(27, 8) \]
\[= \text{gcd}(8, 27 \mod 8) = \text{gcd}(8, 3) \]

- Compute \(\text{gcd}(a, b) \); keep tableau information
- Solve all equations for the remainder
- Substitute backward
Extended Euclidean Algorithm

\[\gcd(35, 27) = \gcd(27, 35 \% 27) = \gcd(27, 8) \]
\[= \gcd(8, 27 \% 8) = \gcd(8, 3) \]
\[= \gcd(3, 8 \% 3) = \gcd(3, 2) \]

- Compute \(\gcd(a, b) \); keep tableau information
- Solve all equations for the remainder
- Substitute backward
Extended Euclidean Algorithm

\[
gcd(35, 27) = gcd(27, 35 \% 27) = gcd(27, 8) \\
= gcd(8, 27 \% 8) = gcd(8, 3) \\
= gcd(3, 8 \% 3) = gcd(3, 2) \\
= gcd(2, 3 \% 2) = gcd(2, 1)
\]

- Compute \(gcd(a, b) \); keep tableau information
- Solve all equations for the remainder
- Substitute backward
Extended Euclidean Algorithm

- Compute \(\text{gcd}(a, b) \); keep tableau information
- Solve all equations for the remainder
- Substitute backward

\[
\begin{align*}
gcd(35, 27) &= gcd(27, 35 \mod 27) = gcd(27, 8) \\
&= gcd(8, 27 \mod 8) = gcd(8, 3) \\
&= gcd(3, 8 \mod 3) = gcd(3, 2) \\
&= gcd(2, 3 \mod 2) = gcd(2, 1) \\
&= gcd(1, 2 \mod 1) = gcd(1, 0)
\end{align*}
\]
Extended Euclidean Algorithm

- Compute $\gcd(a, b)$; keep tableau information
- Solve all equations for the remainder
- Substitute backward

\[
\begin{align*}
gcd(35, 27) & = \gcd(27, 35 \mod 27) = \gcd(27, 8) \\
& = \gcd(8, 27 \mod 8) = \gcd(8, 3) \\
& = \gcd(3, 8 \mod 3) = \gcd(3, 2) \\
& = \gcd(2, 3 \mod 2) = \gcd(2, 1) \\
& = \gcd(1, 2 \mod 1) = \gcd(1, 0)
\end{align*}
\]

\[
\begin{align*}
35 & = 1 \cdot 27 + 8 \\
27 & = 3 \cdot 8 + 3 \\
8 & = 2 \cdot 3 + 2 \\
3 & = 1 \cdot 2 + 1
\end{align*}
\]
Extended Euclidean Algorithm

- Compute \(gcd(a, b)\); keep tableau information
- **Solve all equations for the remainder**
- Substitute backward

\[
\begin{align*}
35 &= 1 \cdot 27 + 8 \\
27 &= 3 \cdot 8 + 3 \\
8 &= 2 \cdot 3 + 2 \\
3 &= 1 \cdot 2 + 1
\end{align*}
\]
Extended Euclidean Algorithm

- Compute \(\text{gcd}(a, b) \); keep tableau information
- Solve all equations for the remainder
- Substitute backward

\[
\begin{align*}
35 &= 1 \cdot 27 + 8 \\
27 &= 3 \cdot 8 + 3 \\
8 &= 2 \cdot 3 + 2 \\
3 &= 1 \cdot 2 + 1
\end{align*}
\]

\[
8 = 35 - 1 \cdot 27
\]
Extended Euclidean Algorithm

- Compute $gcd(a, b)$; keep tableau information
- Solve all equations for the remainder
- Substitute backward

<table>
<thead>
<tr>
<th>Equation</th>
<th>35</th>
<th>27</th>
<th>8</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$35 = 1 \cdot 27 + 8$</td>
<td>35</td>
<td>27</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>$27 = 3 \cdot 8 + 3$</td>
<td>35</td>
<td>27</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>$8 = 2 \cdot 3 + 2$</td>
<td>35</td>
<td>27</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>$3 = 1 \cdot 2 + 1$</td>
<td>35</td>
<td>27</td>
<td>8</td>
<td>3</td>
</tr>
</tbody>
</table>

- $8 = 35 - 1 \cdot 27$
- $3 = 27 - 3 \cdot 8$
Extended Euclidean Algorithm

- Compute \(\gcd(a, b) \); keep tableau information
- Solve all equations for the remainder
- Substitute backward

\[
\begin{array}{c}
35 = 1 \cdot 27 + 8 \\
27 = 3 \cdot 8 + 3 \\
8 = 2 \cdot 3 + 2 \\
3 = 1 \cdot 2 + 1 \\
\end{array}
\]

\[
\begin{array}{c}
8 = 35 - 1 \cdot 27 \\
3 = 27 - 3 \cdot 8 \\
2 = 8 - 2 \cdot 3 \\
\end{array}
\]
Extended Euclidean Algorithm

- Compute $gcd(a, b)$; keep tableau information
- Solve all equations for the remainder
- Substitute backward

\[
\begin{align*}
35 &= 1 \cdot 27 + 8 \\
27 &= 3 \cdot 8 + 3 \\
8 &= 2 \cdot 3 + 2 \\
3 &= 1 \cdot 2 + 1 \\
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2
\end{align*}
\]
Extended Euclidean Algorithm

- Compute $gcd(a, b)$; keep tableau information
- Solve all equations for the remainder
- Substitute backward

\[
\begin{align*}
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2
\end{align*}
\]
Extended Euclidean Algorithm

8 = 35 - 1\cdot 27
3 = 27 - 3\cdot 8
2 = 8 - 2\cdot 3
1 = 3 - 1\cdot 2

- Compute $gcd(a, b)$; keep tableau information
- Solve all equations for the remainder
- Substitute backward
Extended Euclidean Algorithm

- Compute $gcd(a, b)$; keep tableau information
- Solve all equations for the remainder
- **Substitute backward**

\[
\begin{align*}
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2 \\
&= 3 - 1 \cdot (8 - 2 \cdot 3)
\end{align*}
\]
Extended Euclidean Algorithm

- Compute \(gcd(a, b) \); keep tableau information
- Solve all equations for the remainder
- Substitute backward

\[
\begin{align*}
8 & = 35 - 1 \cdot 27 \\
3 & = 27 - 3 \cdot 8 \\
2 & = 8 - 2 \cdot 3 \\
1 & = 3 - 1 \cdot 2 \\
1 & = 3 - 1 \cdot (8 - 2 \cdot 3) \\
1 & = -1 \cdot 8 + 3 \cdot 3
\end{align*}
\]
Extended Euclidean Algorithm

- Compute \(\gcd(a, b) \); keep tableau information
- Solve all equations for the remainder
- Substitute backward

\[
\begin{align*}
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2 \\
&= 3 - 1 \cdot (8 - 2 \cdot 3) \\
&= -1 \cdot 8 + 3 \cdot 3 \\
&= -1 \cdot 8 + 3(27 - 3 \cdot 8)
\end{align*}
\]
Extended Euclidean Algorithm

Compute \(\gcd(a, b) \); keep tableau information

Solve all equations for the remainder

Substitute backward

\[
\begin{align*}
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2 \\
1 &= 3 - 1 \cdot (8 - 2 \cdot 3) \\
&= 3 - 1 \cdot (8 - 2 \cdot 3) \\
&= -1 \cdot 8 + 3 \cdot 3 \\
&= -1 \cdot 8 + 3(27 - 3 \cdot 8) \\
&= 3 \cdot 27 - 10 \cdot 8
\end{align*}
\]
Extended Euclidean Algorithm

- Compute \(\text{gcd}(a, b) \); keep tableau information
- Solve all equations for the remainder
- **Substitute backward**

\[
\begin{align*}
8 & = 35 - 1 \cdot 27 \\
3 & = 27 - 3 \cdot 8 \\
2 & = 8 - 2 \cdot 3 \\
1 & = 3 - 1 \cdot 2
\end{align*}
\]

\[
\begin{align*}
1 & = 3 - 1 \cdot 2 \\
& = 3 - 1 \cdot (8 - 2 \cdot 3) \\
& = -1 \cdot 8 + 3 \cdot 3 \\
& = -1 \cdot 8 + 3(27 - 3 \cdot 8) \\
& = 3 \cdot 27 - 10 \cdot 8 \\
& = 3 \cdot 27 - 10(35 - 1 \cdot 27)
\end{align*}
\]
Extended Euclidean Algorithm

- Compute \(\gcd(a, b) \); keep tableau information
- Solve all equations for the remainder
- **Substitute backward**

\[
egin{align*}
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2 \\
1 &= 3 - 1 \cdot (8 - 2 \cdot 3) \\
&= -1 \cdot 8 + 3 \cdot 3 \\
&= -1 \cdot 8 + 3 (27 - 3 \cdot 8) \\
&= 3 \cdot 27 - 10 \cdot 8 \\
&= 3 \cdot 27 - 10 (35 - 1 \cdot 27) \\
&= 13 \cdot 27 - 10 \cdot 35
\end{align*}
\]
Extended Euclidean Algorithm

- Compute \(\gcd(a, b) \); keep tableau information
- Solve all equations for the remainder
- **Substitute backward**

\[
\begin{align*}
8 &= 35 - 1 \cdot 27 \\
3 &= 27 - 3 \cdot 8 \\
2 &= 8 - 2 \cdot 3 \\
1 &= 3 - 1 \cdot 2
\end{align*}
\]

When substituting back, you keep the larger of \(m, n \) and the number you just substituted.

Don’t simplify further! (or you’ll lose the form you need)

\[
\begin{align*}
1 &= 3 - 1 \cdot 2 \\
&= 3 - 1 \cdot (8 - 2 \cdot 3) \\
&= -1 \cdot 8 + 3 \cdot 3 \\
&= -1 \cdot 8 + 3(27 - 3 \cdot 8) \\
&= 3 \cdot 27 - 10 \cdot 8 \\
&= 3 \cdot 27 - 10(35 - 1 \cdot 27) \\
&= 13 \cdot 27 - 10 \cdot 35
\end{align*}
\]
Problem 2 – Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \mod 33$. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y < 33$.

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

Try this problem with the people around you, and then we’ll go over it together!
Problem 2 – Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \mod 33$. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y < 33$.
a) Find the multiplicative inverse y of $7 \mod 33$. That is, find y such that $7y \equiv 1 \, (mod \, 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y < 33$.

First, we find the gcd:

\[
\begin{align*}
gcd(33, 7) &= gcd(7, 5) & 33 &= 7 \cdot 4 + 5 \\
&= gcd(5, 2) & 7 &= 5 \cdot 1 + 2 \\
&= gcd(2, 1) & 5 &= 2 \cdot 2 + 1 \\
&= gcd(1, 0) & 2 &= 1 \cdot 2 + 0
\end{align*}
\]
Problem 2 – Extended Euclidean Algorithm

a) Find the multiplicative inverse y of $7 \mod 33$. That is, find y such that $7y \equiv 1 \ (mod \ 33)$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \leq y < 33$.

First, we find the gcd:

$$\begin{align*}
gcd(33, 7) &= gcd(7, 5) & 33 &= 7 \cdot 4 + 5 \\
gcd(5, 2) &= gcd(7, 5) & 7 &= 5 \cdot 1 + 2 \\
gcd(2, 1) &= gcd(5, 2) & 5 &= 2 \cdot 2 + 1 \\
gcd(1, 0) &= gcd(2, 1) & 2 &= 1 \cdot 2 + 0
\end{align*}$$

Next, we re-arrange the equations by solving for the remainder:

$$\begin{align*}
1 &= 5 - 2 \cdot 2 \ (6) \\
2 &= 7 - 5 \cdot 1 \ (7) \\
5 &= 33 - 7 \cdot 4
\end{align*}$$
Problem 2 – Extended Euclidean Algorithm

a) Find the multiplicative inverse \(y \) of \(7 \mod 33 \). That is, find \(y \) such that \(7y \equiv 1 \text{ (mod 33)} \). You should use the extended Euclidean Algorithm. Your answer should be in the range \(0 \leq y < 33 \).

First, we find the gcd:

\[
gcd(33, 7) = gcd(7, 5) = gcd(5, 2) = gcd(2, 1) = gcd(1, 0)
\]

\[
33 = 7 \cdot 4 + 5
7 = 5 \cdot 1 + 2
5 = 2 \cdot 2 + 1
2 = 1 \cdot 2 + 0
\]

Next, we re-arrange the equations by solving for the remainder:

\[
1 = 5 - 2 \cdot 2 (6)
2 = 7 - 5 \cdot 1 (7)
5 = 33 - 7 \cdot 4
\]

Now, we backward substitute into the boxed numbers using the equations:

\[
1 = 5 - 2 \cdot 2
= 5 - (7 - 5 \cdot 1) \cdot 2
= 3 \cdot 5 - 7 \cdot 2
= 3 \cdot (33 - 7 \cdot 4) - 7 \cdot 2
= 33 \cdot 3 + 7 \cdot (-14)
\]
Problem 2 – Extended Euclidean Algorithm

a) Find the multiplicative inverse \(y \) of 7 mod 33. That is, find \(y \) such that \(7y \equiv 1 \) (mod 33). You should use the extended Euclidean Algorithm. Your answer should be in the range \(0 \leq y < 33 \).

First, we find the gcd:

\[
\begin{align*}
gcd(33,7) &= gcd(7,5) & 33 &= 7 \cdot 4 + 5 \\
&= gcd(5,2) & 7 &= 5 \cdot 1 + 2 \\
&= gcd(2,1) & 5 &= 2 \cdot 2 + 1 \\
&= gcd(1,0) & 2 &= 1 \cdot 2 + 0
\end{align*}
\]

Next, we re-arrange the equations by solving for the remainder:

\[
\begin{align*}
1 &= 5 - 2 \cdot 2 & (6) \\
1 &= 7 - 5 \cdot 1 & (7) \\
5 &= 33 - 7 \cdot 4
\end{align*}
\]

Now, we backward substitute into the boxed numbers using the equations:

\[
\begin{align*}
1 &= 5 - 2 \cdot 2 \\
&= 5 - (7 - 5 \cdot 1) \cdot 2 \\
&= 3 \cdot 5 - 7 \cdot 2 \\
&= 3 \cdot (33 - 7 \cdot 4) - 7 \cdot 2 \\
&= 33 \cdot 3 + 7 \cdot -14
\end{align*}
\]

So, \(1 = 33 \cdot 3 + 7 \cdot -14 \).

Thus, \(33 - 14 = 19 \) is the multiplicative inverse of 7 mod 33.
Problem 2 – Extended Euclidean Algorithm

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.
Problem 2 – Extended Euclidean Algorithm

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

If $7y \equiv 1 \pmod{33}$, then $2 \cdot 7y \equiv 2 \pmod{33}$.
Problem 2 – Extended Euclidean Algorithm

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

If $7y \equiv 1 \pmod{33}$, then $2 \cdot 7y \equiv 2 \pmod{33}$.

So, $z \equiv 2 \cdot 19 \pmod{33} \equiv 5 \pmod{33}$. This means that the set of solutions is $\{5 + 33k \mid k \in \mathbb{Z}\}$.
Number Theory
Some Definitions

● Divides:
 ○ For \(a, b \in \mathbb{Z} \): \(a \mid b \) iff \(\exists (k \in \mathbb{Z}) \ b = ka \)
 ○ For integers \(a \) and \(b \), we say \(a \) divides \(b \) if and only if there exists an integer \(k \) such that \(b = ka \)

● Congruence Modulo:
 ○ For \(a, b \in \mathbb{Z}, m \in \mathbb{Z}^+ \): \(a \equiv b \pmod{m} \) iff \(m \mid (b - a) \)
 ○ For integers \(a \) and \(b \) and positive integer \(m \), we say \(a \) is congruent to \(b \) modulo \(m \) if and only if \(m \) divides \(b - a \)
Problem 5 – Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a = b$ or $a = -b$.

b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Let's walk through part (a) together.
Problem 5 – Modular Arithmetic

a) Prove that if \(a \mid b \) and \(b \mid a \), where \(a \) and \(b \) are integers, then \(a = b \) or \(a = -b \).

Suppose that \(a \mid b \) and \(b \mid a \), where \(a, b \) are integers.

\[\ldots \]

Therefore, it follows that \(a = -b \) or \(a = b \).
Problem 5 – Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a = b$ or $a = -b$.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.

By the definition of divides, we have $a \neq 0$, $b \neq 0$ and $b = ka$, $a = jb$ for some integers k, j.

Therefore, it follows that $a = -b$ or $a = b$.
Problem 5 – Modular Arithmetic

a) Prove that if \(a \mid b\) and \(b \mid a\), where \(a\) and \(b\) are integers, then \(a = b\) or \(a = -b\).

Suppose that \(a \mid b\) and \(b \mid a\), where \(a, b\) are integers.

By the definition of divides, we have \(a \neq 0\), \(b \neq 0\) and \(b = ka\), \(a = jb\) for some integers \(k, j\).
Combining these equations, we see that \(a = j(ka)\).

…

Therefore, it follows that \(a = -b\) or \(a = b\).
Problem 5 – Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a = b$ or $a = -b$.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.

By the definition of divides, we have $a \neq 0$, $b \neq 0$ and $b = ka$, $a = jb$ for some integers k, j.

Combining these equations, we see that $a = j(ka)$.

Then, dividing both sides by a, we get $1 = jk$. So, $\frac{1}{j} = k$.

...

Therefore, it follows that $a = -b$ or $a = b$.
Problem 5 – Modular Arithmetic

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then $a = b$ or $a = -b$.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.

By the definition of divides, we have $a \neq 0$, $b \neq 0$ and $b = ka$, $a = jb$ for some integers k, j.
Combining these equations, we see that $a = j(ka)$.
Then, dividing both sides by a, we get $1 = jk$. So, $\frac{1}{j} = k$.
Note that j and k are integers, which is only possible if $j, k \in \{1, -1\}$.

Therefore, it follows that $a = -b$ or $a = b$.
Problem 5 – Modular Arithmetic

a) Prove that if \(a \mid b \) and \(b \mid a \), where \(a \) and \(b \) are integers, then \(a = b \) or \(a = -b \).

b) Prove that if \(n \mid m \), where \(n \) and \(m \) are integers greater than 1, and if \(a \equiv b \pmod{m} \), where \(a \) and \(b \) are integers, then \(a \equiv b \pmod{n} \).

Now try part (b) with the people around you, and then we’ll go over it together!
b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.
Problem 5 – Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m > 1$, and $a \equiv b \pmod{m}$.

\[\ldots \]

Therefore, we have $a \equiv b \pmod{n}$.

Problem 5 – Modular Arithmetic

b) Prove that if \(n \mid m \), where \(n \) and \(m \) are integers greater than 1, and if \(a \equiv b \pmod{m} \), where \(a \) and \(b \) are integers, then \(a \equiv b \pmod{n} \).

Let \(n, m, a, b \) be integers. Suppose \(n \mid m \) with \(n, m > 1 \), and \(a \equiv b \pmod{m} \).

\[\ldots \]

\[\ldots \text{we have } n \mid (b - a). \]

Therefore, by definition of congruence, we have \(a \equiv b \pmod{n} \).
Problem 5 – Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m > 1$, and $a \equiv b \pmod{m}$.

... we have $b - a = nC$.

Because C is an integer, by definition of divides, we have $n \mid (b - a)$.

Therefore, by definition of congruence, we have $a \equiv b \pmod{n}$.

NOTE: we don’t know what C will look like yet, just that there is SOME integer here!
Problem 5 – Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m > 1$, and $a \equiv b \pmod{m}$.

By definition of divides, we have $m = kn$ for some $k \in \mathbb{Z}$.

\[\ldots \]
\[\ldots \text{we have} \ b - a = nC. \]

Because C is an integer, by definition of divides, we have $n \mid (b - a)$.

Therefore, by definition of congruence, we have $a \equiv b \pmod{n}$.
Problem 5 – Modular Arithmetic

b) Prove that if \(n \mid m \), where \(n \) and \(m \) are integers greater than 1, and if \(a \equiv b \pmod{m} \), where \(a \) and \(b \) are integers, then \(a \equiv b \pmod{n} \).

Let \(n, m, a, b \) be integers. Suppose \(n \mid m \) with \(n, m > 1 \), and \(a \equiv b \pmod{m} \).

By definition of divides, we have \(m = kn \) for some \(k \in \mathbb{Z} \).
By definition of congruence, we have \(m \mid a - b \), which means that \(a - b = mj \) for some \(j \in \mathbb{Z} \).

... we have \(b - a = nC \).
Because \(C \) is an integer, by definition of divides, we have \(n \mid (b - a) \).

Therefore, by definition of congruence, we have \(a \equiv b \pmod{n} \).
Problem 5 – Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m > 1$, and $a \equiv b \pmod{m}$.

By definition of divides, we have $m = kn$ for some $k \in \mathbb{Z}$.

By definition of congruence, we have $m \mid a - b$, which means that $a - b = mj$ for some $j \in \mathbb{Z}$.

Combining the two equations, we see that $a - b = (knj) = n(kj)$.

… we have $b - a = nC$.

Because C is an integer, by definition of divides, we have $n \mid (b - a)$.

Therefore, by definition of congruence, we have $a \equiv b \pmod{n}$.
Problem 5 – Modular Arithmetic

b) Prove that if \(n \mid m \), where \(n \) and \(m \) are integers greater than 1, and if \(a \equiv b \pmod{m} \), where \(a \) and \(b \) are integers, then \(a \equiv b \pmod{n} \).

Let \(n, m, a, b \) be integers. Suppose \(n \mid m \) with \(n, m > 1 \), and \(a \equiv b \pmod{m} \).

By definition of divides, we have \(m = kn \) for some \(k \in \mathbb{Z} \).
By definition of congruence, we have \(m \mid a - b \), which means that \(a - b = mj \) for some \(j \in \mathbb{Z} \).
Combining the two equations, we see that \(a - b = (knj) = n(kj) \).
Equivalently, we have \(b - a = n(-kj) \).
Because \(C \) is an integer, by definition of divides, we have \(n \mid (b - a) \).

Therefore, by definition of congruence, we have \(a \equiv b \pmod{n} \).
Problem 5 – Modular Arithmetic

b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Let n, m, a, b be integers. Suppose $n \mid m$ with $n, m > 1$, and $a \equiv b \pmod{m}$.

By definition of divides, we have $m = kn$ for some $k \in \mathbb{Z}$.

By definition of congruence, we have $m \mid a - b$, which means that $a - b = mj$ for some $j \in \mathbb{Z}$.

Combining the two equations, we see that $a - b = (knj) = n(kj)$.

Equivalently, we have $b - a = n(-kj)$.

Because $-kj$ is an integer, by definition of divides, we have $n \mid (b - a)$.

Therefore, by definition of congruence, we have $a \equiv b \pmod{n}$.
That’s All, Folks!

Thanks for coming to section this week!
Any questions?