CSE 311 Section 5

Number Theory & Induction

Administrivia

Announcements & Reminders

- HW3
 - If you think something was graded incorrectly, submit a regrade request!
- HW4 due tomorrow 10PM on Gradescope
 - Use late days if you need them!
- HW5
 - 2 parts!
 - BOTH PARTS due Wednesday 11/8 @ 10pm
 - You have extra time on this homework (1.5 weeks)

Greatest Common Divisor

Some Definitions

- Greatest Common Divisor (GCD):
 - The Greatest Common Divisor of *a* and *b* (gcd(*a*, *b*)) is the largest integer *c* such that c|a and c|b
- Multiplicative Inverse:
 - The multiplicative inverse of $a \pmod{n}$ is an integer b such that $ab \equiv 1 \pmod{n}$

Problem 1 – Warm-Up

- a) Calculate gcd(100, 50).
- b) Calculate gcd(17, 31)
- c) Find the multiplicative inverse of 6 (mod 7).
- d) Does 49 have a multiplicative inverse (mod 7)?

Try this problem with the people around you, and then we'll go over it together!

Problem 1 – Warm-Up

a) Calculate gcd(100, 50).

b) Calculate gcd(17, 31)

c) Find the multiplicative inverse of 6 (mod 7).

d) Does 49 have a multiplicative inverse (mod 7)?

Finding GCD

GCD Facts: If *a* and *b* are positive integers, then:

gcd(a, b) = gcd(b, a% b)

$$\gcd(a,0)=a$$

```
public int GCD(int m, int n){
   if(m<n){
       int temp = m;
       m=n;
       n=temp;
   }
   while(n != 0) {
       int rem = m % n;
       m=n;
       n=temp;
   }
   return m;
}
```

gcd(a, b) = gcd(b, a%b)

Euclid's Algorithm

gcd(660,126)

gcd(a, b) = gcd(b, a% b)

Euclid's Algorithm

gcd(660,126) = gcd(126,660 % 126) = gcd(126,660 % 126)

 $= \gcd(126, 30)$

gcd(a, b) = gcd(b, a% b)

Euclid's Algorithm

gcd(660,126) = gcd(126, 660 % 126)= gcd(30, 126 % 30)

 $= \gcd(126, 30)$

$$= gcd(30, 6)$$

gcd(a, b) = gcd(b, a% b)

Euclid's Algorithm

gcd(660,126) = gcd(126, 660 % 126)= gcd(30, 126 % 30)= gcd(6, 30 % 6)

- $= \gcd(126, 30)$ $= \gcd(30, 6)$
- = gcd(6, 0)

Euclid's Algorithm

gcd(660,126) = gcd(126,660 % 126)= gcd(30, 126 % 30)= gcd(6, 30 % 6)= 6

 $= \gcd(126, 30)$ $= \gcd(30, 6)$ $= \gcd(6, 0)$

$$gcd(a, b) = gcd(b, a\% b)$$

Euclid's Algorithm

gcd(660,126) = gcd(126, 660 % 126)= gcd(30, 126 % 30)= gcd(6, 30 % 6)= 6

= gcd(126, 30) = gcd(30, 6) = gcd(6, 0)

gcd(a,b) = gcd(b,a%b)

Tableau form

- $660 = 5 \cdot 126 + 30$
- $126 = 4 \cdot 30 + 6$
- $30 = 5 \cdot 6 + 0$

Bézout's Theorem

- Bézout's Theorem:
 - If a and b are positive integers, then there exist integers s and t such that

$$gcd(a, b) = sa + tb$$

• We're not going to prove this theorem in section though, because it's hard and ugly

Bézout's Theorem tells us that gcd(a, b) = sa + tb.

To find the *s*, *t* we can use the Extended Euclidean Algorithm.

- Step 1: compute gcd(*a*, *b*); keep tableau information
- Step 2: solve all equations for the remainder
- Step 3: substitute backward

gcd(35,27)

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$gcd(35,27) = gcd(27,35\%27) = gcd(27,8)$$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$gcd(35,27) = gcd(27,35\%27) = gcd(27,8)$$

= $gcd(8,27\%8) = gcd(8,3)$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$gcd(35,27) = gcd(27,35\%27) = gcd(27,8)$$

= $gcd(8,27\%8) = gcd(8,3)$
= $gcd(3,8\%3) = gcd(3,2)$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$gcd(35,27) = gcd(27,35\%27) = gcd(27,8)$$

- $= \gcd(8, 27\%8) = \gcd(8, 3)$
- $= \gcd(3, 8\%3) = \gcd(3, 2)$
- $= \gcd(2, 3\%2) = \gcd(2, 1)$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

- gcd(35,27) = gcd(27,35%27) = gcd(27,8)
 - $= \gcd(8, 27\%8) = \gcd(8, 3)$
 - $= \gcd(3, 8\%3) = \gcd(3, 2)$
 - $= \gcd(2, 3\%2) = \gcd(2, 1)$
 - $= \gcd(1, 2\%1) = \gcd(1, 0)$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$gcd(35,27) = gcd(27,35\%27) = gcd(27,8)$$

- $= \gcd(8, 27\%8) = \gcd(8, 3)$
- $= \gcd(3, 8\%3) = \gcd(3, 2)$
- = gcd(2, 3%2)
- = gcd(1, 2%1) =
- = gcd(1,0)

= gcd(2,1)

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$35 = 1 \cdot 27 + 8$$

$$27 = 3 \cdot 8 + 3$$

$$8 = 2 \cdot 3 + 2$$

$$3 = 1 \cdot 2 + 1$$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

35	=	1.27	+	8
27	=	3.8	+	3
8	=	2•3	+	2
3	=	1.2	+	1

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

35	=	1.27	+	8
27	=	3.8	+	3
8	=	2•3	+	2
3	=	1.2	+	1

$$8 = 35 - 1.27$$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

35	=	1.27	+	8
27	=	3.8	+	3
8	=	2•3	+	2
3	=	1.2	+	1

$$8 = 35 - 1 \cdot 27$$

 $3 = 27 - 3 \cdot 8$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

=	1.27	+	8
=	3.8	+	3
=	2•3	+	2
=	1.2	+	1
	=	= 3·8 = 2·3	= 1.27 + = 3.8 + = 2.3 + = 1.2 +

$$8 = 35 - 1 \cdot 27$$

$$3 = 27 - 3 \cdot 8$$

$$2 = 8 - 2 \cdot 3$$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

=	1.27	+	8
=	3.8	+	3
=	2•3	+	2
=	1.2	+	1
	=	= 3·8 = 2·3	$= 1 \cdot 27 + \\ = 3 \cdot 8 + \\ = 2 \cdot 3 + \\ = 1 \cdot 2 + $

8	=	35	—	1.27
3	=	27	_	3.8
2	=	8	_	2•3
1	=	3	_	1.2

- 8 = 35 1.27
- $3 = 27 3 \cdot 8$
- $2 = 8 2 \cdot 3$
- $1 = 3 1 \cdot 2$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

- 8 = 35 1.27
- $3 = 27 3 \cdot 8$
- $2 = 8 2 \cdot 3$
- $1 = 3 1 \cdot 2$

 $1 = 3 - 1 \cdot 2$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

- 8 = 35 1.27
- $3 = 27 3 \cdot 8$
- $2 = 8 2 \cdot 3$
- $1 = 3 1 \cdot 2$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$1 = 3 - 1 \cdot 2 = 3 - 1 \cdot (8 - 2 \cdot 3)$$

- 8 = 35 1.27
- $3 = 27 3 \cdot 8$
- $2 = 8 2 \cdot 3$
- $1 = 3 1 \cdot 2$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$1 = 3 - 1 \cdot 2$$

= 3 - 1 \cdot (8 - 2 \cdot 3)
= -1 \cdot 8 + 3 \cdot 3

- 8 = 35 1.27
- $3 = 27 3 \cdot 8$
- $2 = 8 2 \cdot 3$
- $1 = 3 1 \cdot 2$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$1 = 3 - 1 \cdot 2$$

= 3 - 1 \cdot (8 - 2 \cdot 3)
= -1 \cdot 8 + 3 \cdot 3
= -1 \cdot 8 + 3 (27 - 3 \cdot 8)

1

- 8 = 35 1.27
- $3 = 27 3 \cdot 8$
- $2 = 8 2 \cdot 3$
- $1 = 3 1 \cdot 2$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$= 3 - 1 \cdot 2$$

= 3 - 1 \cdot (8 - 2 \cdot 3)
= -1 \cdot 8 + 3 \cdot 3
= -1 \cdot 8 + 3 (27 - 3 \cdot 8)
= 3 \cdot 27 - 10 \cdot 8

1

- 8 = 35 1.27
- $3 = 27 3 \cdot 8$
- $2 = 8 2 \cdot 3$ $1 = 3 - 1 \cdot 2$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$= 3 - 1 \cdot 2$$

= 3 - 1 \cdot (8 - 2 \cdot 3)
= -1 \cdot 8 + 3 \cdot 3
= -1 \cdot 8 + 3 (27 - 3 \cdot 8)
= 3 \cdot 27 - 10 \cdot 8
= 3 \cdot 27 - 10 (35 - 1 \cdot 27)

Extended Euclidean Algorithm

1

- 8 = 35 1.27
- $3 = 27 3 \cdot 8$
- $2 = 8 2 \cdot 3$ $1 = 3 - 1 \cdot 2$

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$= 3 - 1 \cdot 2$$

= 3 - 1 \cdot (8 - 2 \cdot 3)
= -1 \cdot 8 + 3 \cdot 3
= -1 \cdot 8 + 3 (27 - 3 \cdot 8)
= 3 \cdot 27 - 10 \cdot 8
= 3 \cdot 27 - 10 (35 - 1 \cdot 27)
= 13 \cdot 27 - 10 \cdot 35

Extended Euclidean Algorithm

1

 $8 = 35 - 1 \cdot 27$ $3 = 27 - 3 \cdot 8$ $2 = 8 - 2 \cdot 3$ $1 = 3 - 1 \cdot 2$

When substituting back, you keep the larger of *m*, *n* and the number you just substituted.

Don't simplify further! (or you'll lose the form you need)

- Compute *gcd*(*a*, *b*); keep tableau information
- Solve all equations for the remainder
- Substitute backward

$$= 3 - 1 \cdot 2$$

= 3 - 1 \cdot (8 - 2 \cdot 3)
= -1 \cdot 8 + 3 \cdot 3
= -1 \cdot 8 + 3 (27 - 3 \cdot 8)
= 3 \cdot 27 - 10 \cdot 8
= 3 \cdot 27 - 10 (35 - 1 \cdot 27)
= 13 \cdot 27 - 10 \cdot 35

Problem 2 – Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y < 33$.

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

Try this problem with the people around you, and then we'll go over it together!

Problem 2 – Extended Euclidean Algorithm

a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y \le 33$.

Problem 2 – Extended Euclidean Algorithm

b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

Number Theory

Some Definitions

- Divides:
 - For $a, b \in \mathbb{Z}$: $a \mid b$ iff $\exists (k \in \mathbb{Z}) b = ka$
 - For integers a and b, we say a divides b if and only if there exists an integer k such that b = ka
- Congruence Modulo:
 - For $a, b \in \mathbb{Z}, m \in \mathbb{Z}^+$: $a \equiv b \pmod{m}$ iff $m \mid (b a)$
 - \circ For integers *a* and *b* and positive integer *m*, we say *a* is congruent to *b* modulo *m* if and only if *m* divides *b a*

- a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.
- b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Lets walk through part (a) together.

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.

Start with your proof skeleton!

Therefore, it follows that a = -b or a = b.

. . .

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.

By the definition of divides, we have $a \neq 0, b \neq 0$ and b = ka, a = jb for some integers k, j.

Therefore, it follows that a = -b or a = b.

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.

By the definition of divides, we have $a \neq 0, b \neq 0$ and b = ka, a = jb for some integers k, j. Combining these equations, we see that a = j(ka). ...

Therefore, it follows that a = -b or a = b.

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.

By the definition of divides, we have $a \neq 0, b \neq 0$ and b = ka, a = jb for some integers k, j. Combining these equations, we see that a = j(ka).

Then, dividing both sides by *a*, we get 1 = jk. So, $\frac{1}{j} = k$.

Therefore, it follows that a = -b or a = b.

. . .

a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.

Suppose that $a \mid b$ and $b \mid a$, where a, b are integers.

By the definition of divides, we have $a \neq 0, b \neq 0$ and b = ka, a = jb for some integers k, j.

Combining these equations, we see that a = j(ka). Then, dividing both sides by a, we get 1 = jk. So, $\frac{1}{j} = k$.

Note that j and k are integers, which is only possible if $j, k \in \{1, -1\}$.

Therefore, it follows that a = -b or a = b.

- a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.
- b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

Now try part (b) with the people around you, and then we'll go over it together!

b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

That's All, Folks!

Thanks for coming to section this week! Any questions?