Full outline

1. Suppose for the sake of contradiction that \(L \) is regular. Then there is some DFA \(M \) that recognizes \(L \).

2. Let \(S \) be [fill in with an infinite set of prefixes].

3. Because the DFA is finite and \(S \) is infinite, there are two (different) strings \(x, y \) in \(S \) such that \(x \) and \(y \) go to the same state when read by \(M \) [you don't get to control \(x, y \) other than having them not equal and in \(S \)].

4. Consider the string \(z \) [argue exactly one of \(xz, yz \) will be in \(L \)].

5. Since \(x, y \) both end up in the same state, and we appended the same \(z \), both \(xz \) and \(yz \) end up in the same state of \(M \). Since \(xz \in L \) and \(yz \notin L \), \(M \) does not recognize \(L \). But that's a contradiction!

6. So \(L \) must be an irregular language.

Bijection

One-to-one (aka injection)

A function \(f \) is one-to-one iff
\[
\forall a \forall b (f(a) = f(b) \rightarrow a = b)
\]

Onto (aka surjection)

A function \(f: A \rightarrow B \) is onto iff
\[
\forall b \in B \exists a \in A (b = f(a))
\]

Bijection

A function \(f: A \rightarrow B \) is a bijection iff
\[
f \text{ is one-to-one and onto}
\]

A bijection maps every element of the domain to exactly one element of the co-domain, and every element of the domain to exactly one element of the domain.
What do real numbers look like

0. 3 3 3 3 3 3 3 3 3...
0. 2 7 2 7 2 8 5 4...
0. 1 4 1 5 9 2 6 5...
0. 2 2 2 2 2 2 2 2 2...
0. 1 2 3 4 5 6 7 8...
0. 9 8 7 6 5 4 3 2...
0. 8 2 7 6 4 5 7 4...
0. 5 9 4 2 7 5 1 7...

A string of digits!

Well not a “string” An infinitely long sequence of digits is more accurate.

Proof that [0,1) is not countable

Suppose, for the sake of contradiction, that there is a list of them:

<table>
<thead>
<tr>
<th>Number</th>
<th>Digits after decimal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>f(0)</td>
<td>0</td>
</tr>
<tr>
<td>f(1)</td>
<td>0</td>
</tr>
<tr>
<td>f(2)</td>
<td>0</td>
</tr>
<tr>
<td>f(3)</td>
<td>0</td>
</tr>
<tr>
<td>f(4)</td>
<td>0</td>
</tr>
<tr>
<td>f(5)</td>
<td>0</td>
</tr>
<tr>
<td>f(6)</td>
<td>0</td>
</tr>
<tr>
<td>f(7)</td>
<td>0</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

...