Let $P(A)$ be “There is an NFA whose language is the same as the language for A.”

Let R be a regex not covered by the base cases. By the exclusion rule, $R = A \cup B$ or AB or A^* from some regexes A, B

Inductive Hypothesis: Suppose $P(A)$ and $P(B)$.

Inductive Step: Case 2: AB

Want a machine that accepts exactly strings matched by AB.

Forcing a Mistake

How do we know x, y must be in different states?
Well if one would be accepted and the other rejected, that would be a clear sign.

Or if there’s some string z where xz is accepted but yz is rejected (or vice versa).

The machine is deterministic! If x and y take you to the same state, then xz and yz are also in the same state!
A Proof Outline

Claim: \(\{0^k1^k: k \geq 0\} \) is an irregular language.

...

Let \(S = [\text{TODO}] \). \textit{S is an infinite set of strings.}

Because the DFA is finite, there are two (different) strings \(x, y \) in \(S \) such that \(x \) and \(y \) go to the same state. \textit{We don't get to choose} \(x, y \).

Consider the string \(z = [\text{TODO}] \). \textit{We do get to choose} \(z \) depending on \(x, y \).

Since \(x, y \) led to the same state and \(M \) is deterministic, \(xz \) and \(yz \) will also lead to the same state \(q \) in \(M \). Observe that \(xz \in \{0^k1^k: k \geq 0\} \) but \(yz \notin \{0^k1^k: k \geq 0\} \). Since \(q \) is can be only one of an accept or reject state, \(M \) does not actually recognize \(\{0^k1^k: k \geq 0\} \). That's a contradiction!

Therefore, \(\{0^k1^k: k \geq 0\} \) is an irregular language.