Try a few of your own

Decide whether each of these relations are reflexive, symmetric, antisymmetric, and transitive.

\(\subseteq \) on \(\mathcal{P}(\mathcal{U}) \)

\(\geq \) on \(\mathbb{Z} \)

\(> \) on \(\mathbb{R} \)

\(| \) on \(\mathbb{Z}^+ \)

\(| \) on \(\mathbb{Z} \)

\(\equiv \) (mod 3) on \(\mathbb{Z} \)

Two Prototype Relations

A lot of fundamental relations follow one of two prototypes:

Equivalence Relation

A relation that is reflexive, symmetric, and transitive is called an “equivalence relation”

Partial Order Relation

A relation that is reflexive, antisymmetric, and transitive is called a “partial order”
Directed Graphs

\[G = (V, E) \]

\(V \) is a set of vertices (an underlying set of elements)

\(E \) is a set of edges (ordered pairs of vertices; i.e. connections from one to the next).

Path \(v_0, v_1, ... , v_k \) such that \((v_i, v_{i+1}) \in E \)

Simple Path: path with all \(v_i \) distinct

Cycle: path with \(v_0 = v_k \) (and \(k > 0 \))

Simple Cycle: simple path plus edge \((v_k, v_0) \) with \(k > 0 \)

Relations and Graphs

Describe how each property will show up in the graph of a relation.

Reflexive

Symmetric

Antisymmetric

Transitive