Warm up:
What is the following recursively-defined set?

Basis Step: $4 \in S, \ 5 \in S$

Recursive Step: If $x \in S$ and $y \in S$ then $x - y \in S$
Strings

\(\varepsilon \) is “the empty string”

The string with 0 characters – “” in Java (not null!)

\(\Sigma^* \):

Basis: \(\varepsilon \in \Sigma^* \).

Recursive: If \(w \in \Sigma^* \) and \(a \in \Sigma \) then \(wa \in \Sigma^* \)

\(wa \) means the string of \(w \) with the character \(a \) appended.

You’ll also see \(w \cdot a \) (a \cdot to mean “concatenate” i.e. + in Java)
Functions on Strings
Since strings are defined recursively, most functions on strings are as well.

Length:
\[\text{len}(\varepsilon) = 0; \]
\[\text{len}(wa) = \text{len}(w) + 1 \text{ for } w \in \Sigma^*, a \in \Sigma \]

Reversal:
\[\varepsilon^R = \varepsilon; \]
\[(wa)^R = aw^R \text{ for } w \in \Sigma^*, a \in \Sigma \]

Concatenation
\[x \cdot \varepsilon = x \text{ for all } x \in \Sigma^*; \]
\[x \cdot (wa) = (x \cdot w)a \text{ for } w \in \Sigma^*, a \in \Sigma \]

Number of c’s in a string
\[\#_c(\varepsilon) = 0 \]
\[\#_c(wc) = \#_c(w) + 1 \text{ for } w \in \Sigma^*; \]
\[\#_c(wa) = \#_c(w) \text{ for } w \in \Sigma^*, a \in \Sigma \setminus \{c\}. \]
Structural Induction Template

1. Define $P()$ Show that $P(x)$ holds for all $x \in S$. State your proof is by structural induction.

2. Base Case: Show $P(x)$
[Do that for every base cases x in S.]

Let y be an arbitrary element of S not covered by the base cases. By the exclusion rule, $y = \langle$recursive rules\rangle

3. Inductive Hypothesis: Suppose $P(x)$
[Do that for every x listed as in S in the recursive rules.]

4. Inductive Step: Show $P()$ holds for y.
[You will need a separate case/step for every recursive rule.]

5. Therefore $P(x)$ holds for all $x \in S$ by the principle of induction.
Claim for all $x, y \in \Sigma^*$ \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\).

Let $P(y)$ be “for all $x \in \Sigma^*$ \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\).”

Notice the strangeness of this $P()$ there is a “for all x“ inside the definition of $P(y)$.

That means we’ll have to introduce an arbitrary x as part of the base case and the inductive step!
Define Let \(P(y) \) be “for all \(x \in \Sigma^* \) \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).“

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case:

Inductive Hypothesis:

Inductive Step:

\[\Sigma^*: \text{Basis: } \varepsilon \in \Sigma^*. \]

\[\text{Recursive: If } w \in \Sigma^* \text{ and } a \in \Sigma \text{ then } wa \in \Sigma^* \]
Claim for all \(x, y \in \Sigma^* \) \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).

Define Let \(P(y) \) be “for all \(x \in \Sigma^* \) \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).“

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case: Let \(x \) be an arbitrary string, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) \)
= \(\text{len}(x) + 0 = \text{len}(x) + \text{len}(\varepsilon) \)

Let \(y \) be an arbitrary string not covered by the base case. By the exclusion rule, \(y = wa \) for a string \(w \) and character \(a \).

Inductive Hypothesis: Suppose \(P(w) \)

Inductive Step: Let \(x \) be an arbitrary string.

Therefore, \(\text{len}(xwa) = \text{len}(x) + \text{len}(wa) \)

\[\Sigma^*: \text{Basis: } \varepsilon \in \Sigma^*. \]
\[\text{Recursive: If } w \in \Sigma^* \text{ and } a \in \Sigma \text{ then } wa \in \Sigma^* \]
Claim for all $x, y \in \Sigma^*$ \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y)\).

Define Let \(P(y)\) be “for all \(x \in \Sigma^* \text{ len}(x \cdot y) = \text{len}(x) + \text{len}(y)\). “

We prove \(P(y)\) for all \(y \in \Sigma^*\) by structural induction.

Base Case: Let \(x\) be an arbitrary string, \(\text{len}(x \cdot \epsilon) = \text{len}(x)\) =\(\text{len}(x) + 0 = \text{len}(x) + \text{len}(\epsilon)\)

Let \(y\) be an arbitrary string not covered by the base case. By the exclusion rule, \(y = wa\) for a string \(w\) and character \(a\).

Inductive Hypothesis: Suppose \(P(w)\)

Inductive Step: Let \(x\) be an arbitrary string.

\[
\text{len}(x\cdot y) = \text{len}(xwa) = \text{len}(xw) + 1 \text{ (by definition of len)}
\]

\[
= \text{len}(x) + \text{len}(w) + 1 \text{ (by IH)}
\]

\[
= \text{len}(x) + \text{len}(wa) \text{ (by definition of len)}
\]

Therefore, \(\text{len}(x\cdot y) = \text{len}(x) + \text{len}(y)\), as required.

We conclude that \(P(y)\) holds for all string \(y\) by the principle of induction. Unwrapping the definition of \(y\), we get \(\forall x \forall y \in \Sigma^* \text{ len}(xy) = \text{len}(x) + \text{len}(y)\), as required.

\(\Sigma^*\): Basis: \(\epsilon \in \Sigma^*\).

Recursive: If \(w \in \Sigma^*\) and \(a \in \Sigma\) then \(wa \in \Sigma^*\)
More Structural Sets

Binary Trees are another common source of structural induction.

Basis: A single node is a rooted binary tree.

Recursive Step: If T_1 and T_2 are rooted binary trees with roots r_1 and r_2, then a tree rooted at a new node, with children r_1, r_2 is a binary tree.
Functions on Binary Trees

size(○) = 1
size(T) = size(T₁) + size(T₂) + 1

height(○) = 0
height(T) = 1 + max(height(T₁), height(T₂))
Structural Induction on Binary Trees

Let $P(T)$ be "$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1$". We show $P(T)$ for all binary trees T by structural induction.

Base Case: Let $T = \bigcirc$. $\text{size}(T) = 1$ and $\text{height}(T) = 0$, so $\text{size}(T) = 1 \leq 2 - 1 = 2^{0+1} - 1 = 2^{\text{height}(T)+1} - 1$.

Let T be an arbitrary tree not covered by the base case. By the exclusion rule, $T = \bigcirc$. for trees L, R.

Inductive Hypothesis: Suppose $P(L)$ and $P(R)$.
Structural Induction on Binary Trees (cont.)

Let $P(T)$ be "$\text{size}(T) \leq 2^{\text{height}(T)} + 1 - 1". We show $P(T)$ for all binary trees T by structural induction.

$T = \quad \begin{array}{c}
\text{height}(T) = 1 + \max\{\text{height}(L), \text{height}(R)\} \\
\text{size}(T) = 1 + \text{size}(L) + \text{size}(R)
\end{array}$

So $P(T)$ holds, and we have $P(T)$ for all binary trees T by the principle of induction.
Let $P(T)$ be "size(T) $\leq 2^{\text{height}(T)}+1 − 1". We show $P(T)$ for all binary trees T by structural induction.

$T =$

\[
\begin{array}{c}
\text{L} \\
T \\
\text{R}
\end{array}
\]

height(T) $= 1 + \max\{\text{height}(L), \text{height}(R)\}$

size(T) $= 1 + \text{size}(L) + \text{size}(R)$

size(T) $= 1 + \text{size}(L) + \text{size}(R) \leq 1 + 2^{\text{height}(L)+1} − 1 + 2^{\text{height}(R)+1} − 1$ (by IH)

$\leq 2^{\text{height}(L)+1} + 2^{\text{height}(R)+1} − 1$ (cancel 1's)

$\leq 2^{\text{height}(T)} + 2^{\text{height}(T)} − 1 = 2^{\text{height}(T)+1} − 1$ (T taller than subtrees)

So $P(T)$ holds, and we have $P(T)$ for all binary trees T by the principle of induction.
What does the inductive step look like?

Here’s a recursively-defined set:

Basis: $0 \in T$ and $5 \in T$

Recursive: If $x, y \in T$ then $x + y \in T$ and $x - y \in T$.

Let $P(x)$ be “$5|x$”

What does the inductive step look like?

Well there’s two recursive rules, so we have two things to show
Just the IS (you still need the other steps)

Let t be an arbitrary element of T not covered by the base case. By the exclusion rule $t = x + y$ or $t = x - y$ for $x, y \in T$.

Inductive hypothesis: Suppose $P(x)$ and $P(y)$ hold.

Case 1: $t = x + y$

By IH $5| x$ and $5| y$ so $5a = x$ and $5b = y$ for integers a, b.

Adding, we get $x + y = 5a + 5b = 5(a + b)$. Since a, b are integers, so is $a + b$, and $P(x + y)$, i.e. $P(t)$, holds.

Case 2: $t = x - y$

By IH $5| x$ and $5| y$ so $5a = x$ and $5b = y$ for integers a, b.

Subtracting, we get $x - y = 5a - 5b = 5(a - b)$. Since a, b are integers, so is $a - b$, and $P(x - y)$, i.e., $P(t)$, holds.

In all cases, we have $P(t)$. By the principle of induction, $P(x)$ holds for all $x \in T$.
If you don’t have a recursively-defined set

You won’t do structural induction.

You can do weak or strong induction though.

For example, Let $P(n)$ be “for all elements of S of “size” n <something> is true”

To prove “for all $x \in S$ of size n...” you need to start with “let x be an arbitrary element of size $k + 1$ in your IS.

You CAN’T start with size k and “build up” to an arbitrary element of size $k + 1$ it isn’t arbitrary.
Induction: Hats!

You have \(n \) people in a line (\(n \geq 2 \)). Each of them wears either a purple hat or a gold hat. The person at the front of the line wears a purple hat. The person at the back of the line wears a gold hat.

Show that for every arrangement of the line satisfying the rule above, there is a person with a purple hat next to someone with a gold hat.

Yes, this is kinda obvious. I promise this is good induction practice.

Yes, you could argue this by contradiction. I promise this is good induction practice.
Induction: Hats!

Define $P(n)$ to be “in every line of n people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show $P(n)$ for all integers $n \geq 2$ by induction on n.

Base Case: $n = 2$

Inductive Hypothesis:

Inductive Step:

By the principle of induction, we have $P(n)$ for all $n \geq 2$
Induction: Hats!

Define $P(n)$ to be “in every line of n people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show $P(n)$ for all integers $n \geq 2$ by induction on n.

Base Case: $n = 2$ The line must be just a person with a purple hat and a person with a gold hat, who are next to each other.

Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 2$.

Inductive Step: Consider an arbitrary line with $k + 1$ people in purple and gold hats, with a gold hat at one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.

By the principle of induction, we have $P(n)$ for all $n \geq 2$.
Induction: Hats!

Define \(P(n) \) to be “in every line of \(n \) people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat”

We show \(P(n) \) for all integers \(n \geq 2 \) by induction on \(n \).

Base Case: \(n = 2 \) The line must be just a person with a purple hat and a person with a gold hat, who are next to each other.

Inductive Hypothesis: Suppose \(P(k) \) holds for an arbitrary \(k \geq 2 \).

Inductive Step: Consider an arbitrary line with \(k + 1 \) people in purple and gold hats, with a gold hat at one end and a purple hat at the other.

Case 1: There is someone with a purple hat next to the person in the gold hat at one end. Then those people are the required adjacent opposite hats.

Case 2: There is a person with a gold hat next to the person in the gold hat at the end. Then the line from the second person to the end is length \(k \), has a gold hat at one end and a purple hat at the other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.

In either case we have \(P(k + 1) \).

By the principle of induction, we have \(P(n) \) for all \(n \geq 2 \)
Part 3 of the course!
Course Outline

Symbolic Logic (training wheels)
Just make arguments in mechanical ways.

Set Theory/Number Theory (bike in your backyard)
Models of computation (biking in your neighborhood)
Still make and communicate rigorous arguments
But now with objects you haven’t used before.
 - A first taste of how we can argue rigorously about computers.
Next week: regular expressions and context free grammars – understand these “simpler computers”
Soon: what these simple computers can do
Then: what simple computers can’t do.
Last week: A problem our computers cannot solve.