Functions on Strings
Since strings are defined recursively, most functions on strings are as well.

Length:
\[\text{len}(\varepsilon) = 0; \]
\[\text{len}(wa) = \text{len}(w) + 1 \text{ for } w \in \Sigma^*, a \in \Sigma \]

Reversal:
\[\varepsilon^R = \varepsilon; \]
\[(wa)^R = aw^R \text{ for } w \in \Sigma^*, a \in \Sigma \]

Concatenation
\[x \cdot \varepsilon = x \text{ for all } x \in \Sigma^*; \]
\[x \cdot (wa) = (x \cdot w)a \text{ for } w \in \Sigma^*, a \in \Sigma \]

Number of c’s in a string
\[\#_c(\varepsilon) = 0 \]
\[\#_c(wc) = \#_c(w) + 1 \text{ for } w \in \Sigma^*; \]
\[\#_c(wa) = \#_c(w) \text{ for } w \in \Sigma^*, a \in \Sigma \setminus \{c\}. \]

Claim for all \(x, y \in \Sigma^* \) \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).

Define Let \(P(y) \) be “for all \(x \in \Sigma^* \) \(\text{len}(x \cdot y) = \text{len}(x) + \text{len}(y) \).”

We prove \(P(y) \) for all \(y \in \Sigma^* \) by structural induction.

Base Case: Let \(x \) be an arbitrary string, \(\text{len}(x \cdot \varepsilon) = \text{len}(x) = \text{len}(x) + \text{len}(\varepsilon) \)

Let \(y \) be an arbitrary string not covered by the base case. By the exclusion rule, \(y = wa \) for a string \(w \) and character \(a \).

Inductive Hypothesis: Suppose \(P(w) \)

Inductive Step: Let \(x \) be an arbitrary string.
\[\text{len}(xy) = \text{len}(xwa) = \text{len}(xw) + 1 \text{ (by definition of len)} \]
\[= \text{len}(x) + \text{len}(w) + 1 \text{ (by IH)} \]
\[= \text{len}(x) + \text{len}(wa) \text{ (by definition of len)} \]

Therefore, \(\text{len}(xy) = \text{len}(x) + \text{len}(y) \), as required.

We conclude that \(P(y) \) holds for all string \(y \) by the principle of induction. Unwrapping the definition of \(y \), we get \(\forall x \forall y \in \Sigma^* \text{len}(xy) = \text{len}(x) + \text{len}(y) \), as required.

\(\Sigma^*: \text{Basis: } \varepsilon \in \Sigma^* \).

Recursive: If \(w \in \Sigma^* \) and \(a \in \Sigma \) then \(wa \in \Sigma^* \)
Structural Induction Template

1. Define $P()$ Show that $P(x)$ holds for all $x \in S$. State your proof is by structural induction.

2. Base Case: Show $P(x)$
 [Do that for every base cases x in S.]
 Let y be an arbitrary element of S not covered by the base cases. By the exclusion rule, $y = \langle \text{recursive rules} \rangle$

3. Inductive Hypothesis: Suppose $P(x)$
 [Do that for every x listed as in S in the recursive rules.]

4. Inductive Step: Show $P()$ holds for y.
 [You will need a separate case/step for every recursive rule.]

5. Therefore $P(x)$ holds for all $x \in S$ by the principle of induction.

Binary Trees

Basis: A single node is a rooted binary tree.

Recursive Step: If T_1 and T_2 are rooted binary trees with roots r_1 and r_2, then a tree rooted at a new node, with children r_1, r_2 is a binary tree.

- $size(\) = 1$
- $size(\begin{array}{c}T_1 \quad T_2 \end{array}) = size(T_1) + size(T_2) + 1$
- $height(\) = 0$
- $height(\begin{array}{c}T_1 \quad T_2 \end{array}) = 1 + \max(height(T_1), height(T_2))$