
Wrap-up Number 
Theory

CSE 311 Autumn 2023

Lecture 15



Announcements

HW4 due tonight

HW5 comes out tonight as well.
HW5 is 1.5 weeks, not 1 week!

Due Wed. Nov. 8

We recommend you aim to finish “Part 1” by next Friday (number theory proofs and 
computations—about the length of a normal hw), and do “Part 2” (induction, topic 
for next week, two proofs) after that. 

but there’s just one deadline. It’s all due Wed. Nov 8.



Plan For Today

We don’t expect you to fully absorb the new material today.

Our goals are:

1. See that number theory results can make code faster in unexpected 
ways.

2. See a bit of code analysis (a preview of 332).

3. Hopefully say “oh neat, I understand a little bit about how secure 
online communication works” 
You should not expect to fully understand anything from today.

We’re going to skip a bunch of slides today. If you’re interested read them for fun. If 
not, then skip them!



GCD and LCM

The Greatest Common Divisor of 𝑎 and 𝒃 (gcd(a,b)) is the 

largest integer 𝒄 such that 𝒄|𝒂 and 𝒄|𝒃

Greatest Common Divisor

The Least Common Multiple of 𝑎 and 𝒃 (lcm(a,b)) is the 

smallest positive integer 𝒄 such that 𝒂|𝒄 and 𝒃|𝒄.

Least Common Multiple



Try a few values…

gcd(100,125)

gcd(17,49)

gcd(17,34)

gcd(13,0)

lcm(7,11)

lcm(6,10)



How do you calculate a gcd?

You could:

Find the prime factorization of each

Take all the common ones. E.g.

gcd(24,20)=gcd(23 ⋅ 3, 22 ⋅ 5) = 2^{min(2,3)} = 2^2 = 4.

(lcm has a similar algorithm – take the maximum number of copies of 
everything)

But that’s….really expensive. Mystery finds gcd.



public int Mystery(int m, int n){

if(m<n){

int temp = m;

m=n;

n=temp;

}

while(n != 0) {

int rem = m % n;

m=n;

n=temp;

}

return m;

} 



GCD fact

If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

Why is this true? The proof isn’t easy, it’s at the end of this deck.

Why should you care?



So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 3 𝑚𝑜𝑑 𝑛

Just multiply both sides by 
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

What number can we pick?

The next two slides are going to get more abstract…we’re listing out the 
facts we need to solve that equation.

Remember everything we’re 

learning contributes to us 

eventually understanding RSA.

This is a key step in generating keys.



Bézout’s Theorem

We’re not going to prove this theorem…

But it turns out Mystery can be extended to find them.

You saw how to do that in section!

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔
and 𝒕 such that 

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem



So…what’s it good for?

Suppose I want to solve 7𝑥 ≡ 3 𝑚𝑜𝑑 𝑛

Just multiply both sides by 
1

7
…

Oh wait. We want a number to multiply by 7 to get 1.

If the gcd(7,n) = 1

Then 𝑠 ⋅ 7 + 𝑡𝑛 = 1, so 7𝑠 − 1 = −𝑡𝑛 i.e. 𝑛|(7𝑠 − 1) so 7𝑠 ≡ 1 𝑚𝑜𝑑 𝑛 .

So the 𝑠 from Bézout’s Theorem is what we should multiply by!



Ok…how am I supposed to find 𝑠, 𝑡?

It turns out that while you’re calculating the gcd (using the Mystery 
algorithm), you can keep some extra information recorded, and end up 
with the 𝑠, 𝑡

This is called the “extended Euclidian algorithm”

Examples in these slides.



Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find? 

The multiplicative inverse of 7(mod 26)



Finding the inverse…

gcd(26,7) = gcd(7, 26%7) = gcd(7,5)

= gcd(5, 7%5)    = gcd(5,2)

= gcd(2, 5%2)    = gcd(2, 1)

= gcd(1, 2%1) = gcd(1,0)= 1.

26 = 3 ⋅ 7 + 5 ; 5 = 26 − 3 ⋅ 7

7 = 5 ⋅ 1 + 2 ;  2 = 7 − 5 ⋅ 1

5 = 2 ⋅ 2 + 1 ;  1 = 5 − 2 ⋅ 2

1 = 5 − 2 ⋅ 2
= 5 − 2(7 − 5 ⋅ 1)
= 3 ⋅ 5 − 2 ⋅ 7

= 3 ⋅ 26 − 3 ⋅ 7 − 2 ⋅ 7
3 ⋅ 26 − 11 ⋅ 7

−11 is a multiplicative inverse of 7 for 

(mod 26) arithmetic!

We’ll write that as 15, since we’re 

working mod 26.



Try it

Solve the equation 7𝑦 ≡ 3(𝑚𝑜𝑑 26)

What do we need to find? 

The multiplicative inverse of 7 (𝑚𝑜𝑑 26). We found it’s 15.

15 ⋅ 7 ⋅ 𝑦 ≡ 15 ⋅ 3(𝑚𝑜𝑑 26)

𝑦 ≡ 45(𝑚𝑜𝑑 26)

Or 𝑦 ≡ 19(𝑚𝑜𝑑 26)

So 26|19 − 𝑦, i.e. 26𝑘 = 19 − 𝑦 (for 𝑘 ∈ ℤ) i.e. 𝑦 = 19 − 26 ⋅ 𝑘 for any 𝑘 ∈ ℤ

Solutions: {… ,−7,19,45,…19 + 26𝑘,… } i.e. {𝑥: 𝑥 = 19 + 26𝑘 for some 𝑘 ∈ ℤ}



Proving the key fact about gcds



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑦 is a common divisor of 𝑎 and 𝑏.

By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.

Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and 
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.

Plugging in both of our other equations:

𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a 
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).

Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and 
a = 𝑥𝑗′ for an integer 𝑗′.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞

Plugging in both of our other equations:

𝑥𝑗′ = 𝑞𝑥𝑘′ + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗′ − 𝑞𝑥𝑘′ =
𝑥 𝑗′ − 𝑞𝑘′ . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus 
𝑥 ≤ 𝑦.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥. 

Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .



Euclidian Algorithm



Euclid’s Algorithm

gcd(660,126)  

while(n != 0) {

int rem = m % n;

m=n;

n=rem;

}



Euclid’s Algorithm

gcd(660,126)  

while(n != 0) {

int rem = m % n;

m=n;

n=rem;

}

= gcd(126, 660 mod 126)   = gcd(126, 30)

= gcd(30, 126 mod 30) = gcd(30, 6)

= gcd(6, 30 mod 6) = gcd(6, 0)

= 6

Tableau form

660 = 5 ⋅ 126 + 30
126 = 4 ⋅ 30 + 6
30 = 5 ⋅ 6 + 0

Starting Numbers

Final 

answer



Bézout’s Theorem

We’re not going to prove this theorem…

But we’ll show you how to find 𝑠,𝑡 for any positive integers 𝑎, 𝑏.

If 𝒂 and 𝒃 are positive integers, then there exist integers 𝒔
and 𝒕 such that 

gcd(a,b)= 𝒔𝒂 + 𝒕𝒃

Bézout’s Theorem



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27)



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

gcd(35,27)  = gcd(27, 35%27) = gcd(27,8)

= gcd(8, 27%8)     = gcd(8, 3)

= gcd(3, 8%3)       = gcd(3, 2)

= gcd(2, 3%2)       = gcd(2,1)

= gcd(1, 2%1)        = gcd(1,0)

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward 

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

35 = 1 ⋅ 27 + 8
27 = 3 ⋅ 8 + 3
8 = 2 ⋅ 3 + 2
3 = 1 ⋅ 2 + 1

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 2 ⋅ 3



Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.

Step 2 solve all equations for the remainder.

Step 3 substitute backward

8 = 35 − 1 ⋅ 27
3 = 27 − 3 ⋅ 8
2 = 8 − 2 ⋅ 3
1 = 3 − 1 ⋅ 2

1 = 3 − 1 ⋅ 2
= 3 − 1 ⋅ 8 − 2 ⋅ 3
= −1 ⋅ 8 + 3 ⋅ 3
= −1 ⋅ 8 + 3 27 − 3 ⋅ 8
= 3 ⋅ 27 − 10 ⋅ 8
= 3 ⋅ 27 − 10(35 − 1 ⋅ 27)
= 13 ⋅ 27 − 10 ⋅ 35

gcd(27,35) = 13 ⋅ 27 + −10 ⋅ 35

When substituting 

back, you keep 

the larger of 𝑚, 𝑛
and the number 

you just 

substituted. 

Don’t simplify 

further! (or you 

lose the form you 

need)



RSA Encryption



Key Steps in RSA

Given two numbers, we can find their gcd quickly.

If we have an equation

𝑎𝑥 ≡ 𝑏(mod 𝑛)

And gcd 𝑎, 𝑛 = 1 then we can quickly find a number to multiply the 
equation by to solve for 𝑥.



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.

Prime Numbers

Modular Arithmetic

Modular Multiplicative Inverse

Bezout’s Theorem

Extended Euclidian Algorithm



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.



Framing Device

We’re going to give you enough background to (mostly) understand the 
RSA encryption system.

Modular Exponentiation



An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and 
an exponent 𝑒 (often about 60,000).

Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.

You compute 𝐶 = 𝑎𝑒%𝑛 and send Amazon 𝐶.

Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶𝑑%𝑛

Fact: 𝑎 = 𝐶𝑑%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎



How big are those numbers?

1230186684530117755130494958384962720772853569595334792197322

4521517264005072636575187452021997864693899564749427740638459

2519255732630345373154826850791702612214291346167042921431160

2221240479274737794080665351419597459856902143413

3347807169895689878604416984821269081770479498371376856891243

1388982883793878002287614711652531743087737814467999489

3674604366679959042824463379962795263227915816434308764267603

2283815739666511279233373417143396810270092798736308917



How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on HW5. It’s a 
nice combination of lots of things we’ve done with modular arithmetic. 

Let’s talk about finding 𝐶 = 𝑎𝑒%𝑛. 

𝑒 is a BIG number (about 216 is a common choice)

int total = 1;

for(int i = 0; i < e; i++){

total = (a * total) % n;

}



Fast Exponentiation Algorithm



Let’s build a faster algorithm.

Fast exponentiation – simple case. What if 𝑒 is exactly 216?

int total = 1;

for(int i = 0; i < e; i++){

total = a * total % n;

}

Instead:

int total = a;

for(int i = 0; i < log(e); i++){

total = total^2 % n;

}



Fast Exponentiation Algorithm

What if 𝑒 isn’t exactly a power of 2?

Step 1: Write 𝑒 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of 
𝑒 had a 1.



Fast Exponentiation Algorithm

Find 411%10

Step 1: Write 𝒆 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of 
𝑒 had a 1.

Start with largest power of 2 less than 𝑒 (8). 8’s place gets a 1. Subtract power

Go to next lower power of 2, if remainder of 𝑒 is larger, place gets a 1, subtract 
power; else place gets a 0 (leave remainder alone). 

11 = 10112



Fast Exponentiation Algorithm

Find 411%10

Step 1: Write 𝑒 in binary.

Step 2: Find 𝒂𝒄%𝒏 for 𝒄 every power of 𝟐 up to 𝒆.

Step 3: calculate 𝑎𝑒 by multiplying 𝑎𝑐 for all 𝑐 where binary expansion of 𝑒
had a 1.

41%10 = 4

42%10 = 6

44%10 = 62%10 = 6

48%10 = 62%10 = 6



Fast Exponentiation Algorithm

Find 411%10

Step 1: Write 𝑒 in binary.

Step 2: Find 𝑎𝑐%𝑛 for 𝑐 every power of 2 up to 𝑒.

Step 3: calculate 𝒂𝒆 by multiplying 𝒂𝒄 for all 𝒄 where binary expansion of 𝒆
had a 𝟏.

41%10 = 4

42%10 = 6

44%10 = 62%10 = 6

48%10 = 62%10 = 6

411%10 = 48+2+1%10 =

[(48%10) ⋅ 42%10 ⋅ 4%10 ]%10 = (6 ⋅ 6 ⋅ 4)%10

= 36%10 ⋅ 4 %10 = 6 ⋅ 4 %10 = 24%10 = 4.



Fast Exponentiation Algorithm

Is it…actually fast?

The number of multiplications is between log2 𝑒 and 2 log2 𝑒.

That’s A LOT smaller than 𝑒



One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

Find 25 in binary:

16 is the largest power of 2 smaller than 25. 25 − 16 = 9 remaining

8 is smaller than 9. 9 − 8 = 1 remaining.

4s place gets a 0.

2s place gets a 0

1𝑠 place gets a 1

110012



One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

Find 32
𝑖
%7:

31%7 = 3

32%7 = 9%7 = 2

34%7 = (32 ⋅ 32)%7 = (2 ⋅ 2)%7 = 4

38%7 = 34 ⋅ 34 %7 = 4 ⋅ 4 %7 = 2

316%7 = 38 ⋅ 38 %7 = 2 ⋅ 2 %7 = 4



One More Example for Reference

Find 325%7 using the fast exponentiation algorithm.

31%7 = 3

32%7 = 2

34%7 = 4

38%7 = 2

316%7 = 4

325%7 = 316+8+1%7

= [(316%7) ⋅ 38%7 ⋅ (31%7)]%7

= 4 ⋅ 2 ⋅ 3 %7
= 1 ⋅ 3 %7 = 3



A Brief Concluding Remark

Why does RSA work? i.e. why is my credit card number “secret”?

Raising numbers to large exponents (in mod arithmetic) and finding 
multiplicative inverses in modular arithmetic are things computers can 
do quickly.

But factoring numbers (to find 𝑝, 𝑞 to get 𝑑) or finding an “exponential 
inverse” (not the real term) directly are not things computers can do 
quickly. At least as far as we know. 



An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers 𝑝, 𝑞 and 
an exponent 𝑒 (often about 60,000).

Amazon calculates n = 𝑝𝑞. They tell your computer (𝑛, 𝑒) (not 𝑝, 𝑞)

You want to send Amazon your credit card number 𝑎.

You compute 𝐶 = 𝑎𝑒%𝑛 and send Amazon 𝐶.

Amazon computes 𝑑, the multiplicative inverse of 𝑒 (𝑚𝑜𝑑 [𝑝 − 1][𝑞 − 1])

Amazon finds 𝐶𝑑%𝑛

Fact: 𝑎 = 𝐶𝑑%𝑛 as long as 0 < 𝑎 < 𝑛 and 𝑝 ∤ 𝑎 and 𝑞 ∤ 𝑎



If we have time…



We skipped some proofs…

…you’ve had a lot of good questions!

We missed:

A proof where we got stuck: main message, work from both ends! Be willing 
to erase things and try again!
Lecture 12, Slide 34

More practice with proof by contradiction. 
Lecture 13, Slide 24

More practice with number theory definitions
End of this slide deck.

If we have time we’ll practice them now. Otherwise we’ll leave you to try them 
on your own.

https://courses.cs.washington.edu/courses/cse311/23au/lecture/12-more-numbers.pdf#page=34
https://courses.cs.washington.edu/courses/cse311/23au/lecture/13-contradiction.pdf#page=24


Extra Practice!



Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic



Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔

𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that 
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division 
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)



% and Mod

Other resources use 𝑚𝑜𝑑 to mean an operation (takes in an integer, 
outputs an integer). We will not in this course. 𝑚𝑜𝑑 only describes ≡. It’s 
not “just on the right hand side” 

Define 𝑎%𝑏 to be “the 𝑟 you get from the division theorem”
i.e. the integer 𝑟 such that 0 ≤ 𝑟 < 𝑑 and 𝑎 = 𝑏𝑞 + 𝑟 for some integer 𝑞.

This is the “mod function”

I claim 𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

How do we show and if-and-only-if?



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑛|𝑏 − 𝑎 so 𝑛𝑘 = 𝑏 − 𝑎 for some integer 𝑘. (by definitions of mod and 
divides).

So 𝑎 = 𝑏 − 𝑛𝑘

Taking each side %𝑛 we get:

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛

Where the last equality follows from 𝑘 being an integer and doing 𝑘
applications of the identity we proved in the warm-up.



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Show the forward direction:

If 𝑎%𝑛 = 𝑏%𝑛 then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

This proof is a bit different than the other direction.

Remember to work from top and bottom!!

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Forward direction:

Suppose 𝑎%𝑛 = 𝑏%𝑛.

By definition of %,𝑎 = 𝑘𝑛 + (𝑎%𝑛) and 𝑏 = 𝑗𝑛 + 𝑏%𝑛 for integers 𝑘, 𝑗

Isolating 𝑎%𝑛 we have 𝑎%𝑛 = 𝑎 − 𝑘𝑛. Since 𝑎%𝑛 = 𝑏%𝑛, we can plug 
into the second equation to get: 𝑏 = 𝑗𝑛 + (𝑎 − 𝑘𝑛)

Rearranging, we have 𝑏 − 𝑎 = 𝑗 − 𝑘 𝑛. Since 𝑘, 𝑗 are integers we have 
𝑛|(𝑏 − 𝑎).

By definition of mod we have 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).



More Number Theory Proofs



Caution

To fit proofs on these slides, I skipped some of the boilerplate steps (e.g. 
introducing variables as arbitrary, including a conclusion)

Don’t skip those on your homework/midterm, please ☺



Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic



Warm up

Show that 𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 if and only if 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

𝑎 ≡ 𝑏 𝑚𝑜𝑑 𝑛 ↔ 𝑛|(𝑏 − 𝑎) ↔ 𝑛𝑘 = 𝑏 − 𝑎 for 𝑘 ∈ ℤ ↔

𝑛(−𝑘) = 𝑎 − 𝑏(for − k ∈ ℤ) ↔ 𝑛| 𝑎 − 𝑏 ↔ 𝑏 ≡ 𝑎(𝑚𝑜𝑑 𝑛)

Show that 𝑎%𝑛=(𝑎 − 𝑛)%𝑛 Where 𝑏%𝑐 is the unique 𝑟 such that 𝑏 =
𝑘𝑐 + 𝑟 for some integer 𝑘.

By definition of %, 𝑎 = 𝑞𝑛 + (𝑎%𝑛) for some integer 𝑞. Subtracting 𝑛,

𝑎 − 𝑛 = 𝑞 − 1 𝑛 + (𝑎%𝑛). Observe that 𝑞 − 1 is an integer, and that 
this is the form of the division theorem for 𝑎 − 𝑛 %𝑛. Since the division 
theorem guarantees a unique integer, 𝑎 − 𝑛 %𝑛 = (𝑎%𝑛)



Modular arithmetic so far

For all integers 𝑎, 𝑏, 𝑐, 𝑑, 𝑛 where 𝑛 > 0:

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then 𝑎 + 𝑐 ≡ 𝑎 + 𝑐(𝑚𝑜𝑑 𝑛).

If 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) then 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑛).

𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛) if and only if 𝑏 ≡ 𝑎 (𝑚𝑜𝑑 𝑛).

𝑎%𝑛 = 𝑎 − 𝑛 %𝑛.



% and Mod

Other resources use 𝑚𝑜𝑑 to mean an operation (takes in an integer, 
outputs an integer). We will not in this course. 𝑚𝑜𝑑 only describes ≡. It’s 
not “just on the right hand side” 

Define 𝑎%𝑏 to be “the 𝑟 you get from the division theorem”
i.e. the integer 𝑟 such that 0 ≤ 𝑟 < 𝑑 and 𝑎 = 𝑏𝑞 + 𝑟 for some integer 𝑞.

This is the “mod function”

I claim 𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

How do we show and if-and-only-if?



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Backward direction:

Suppose 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

𝑛|𝑏 − 𝑎 so 𝑛𝑘 = 𝑏 − 𝑎 for some integer 𝑘. (by definitions of mod and 
divides).

So 𝑎 = 𝑏 − 𝑛𝑘

Taking each side %𝑛 we get:

𝑎%𝑛 = 𝑏 − 𝑛𝑘 %𝑛 = 𝑏%𝑛

Where the last equality follows from 𝑘 being an integer and doing 𝑘
applications of the identity we proved in the warm-up.



𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Show the forward direction:

If 𝑎%𝑛 = 𝑏%𝑛 then 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).

This proof is a bit different than the other direction.

Remember to work from top and bottom!!

For every 𝑎 ∈ ℤ, 𝒅 ∈ ℤ with 𝒅 > 𝟎
There exist unique integers 𝑞, 𝑟 with 0 ≤ 𝑟 < 𝑑 Such that 𝑎 = 𝑑𝑞 + 𝑟

The Division Theorem

Let 𝑎 ∈ ℤ, 𝑏 ∈ ℤ, 𝑛 ∈ ℤ and 𝑛 > 0.

We say 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if and only if 𝑛|(𝑏 − 𝑎)

Equivalence in modular arithmetic
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𝑎%𝑛 = 𝑏%𝑛 if and only if 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛)

Forward direction:

Suppose 𝑎%𝑛 = 𝑏%𝑛.

By definition of %,𝑎 = 𝑘𝑛 + (𝑎%𝑛) and 𝑏 = 𝑗𝑛 + 𝑏%𝑛 for integers 𝑘, 𝑗

Isolating 𝑎%𝑛 we have 𝑎%𝑛 = 𝑎 − 𝑘𝑛. Since 𝑎%𝑛 = 𝑏%𝑛, we can plug 
into the second equation to get: 𝑏 = 𝑗𝑛 + (𝑎 − 𝑘𝑛)

Rearranging, we have 𝑏 − 𝑎 = 𝑗 − 𝑘 𝑛. Since 𝑘, 𝑗 are integers we have 
𝑛|(𝑏 − 𝑎).

By definition of mod we have 𝑎 ≡ 𝑏(𝑚𝑜𝑑 𝑛).



Why does the Euclidian 
Algorithm Work?



Correctness of an algorithm

The key to the Euclidian Algorithm being correct is that each time 
through the loop, you don’t change the gcd of the variables m,n.

To prove the code correct, you really want an induction proof (it’s good 
practice to think about it!). The inductive step relies on the fact we 
stated but didn’t prove:

gcd(a,b) = gcd(b, a%b).

Let’s prove it!



GCD fact

If 𝑎 and 𝑏 are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?

Call 𝑎 = gcd 𝑤, 𝑥 , 𝑏 = gcd(𝑦, 𝑧)

If 𝑏|𝑤 and 𝑏|𝑥 then 𝑏 is a common divisor of 𝑤, 𝑥 so 𝑏 ≤ 𝑎

If 𝑎|𝑦 and 𝑎|𝑧 then 𝑎 is a common divisor of 𝑦, 𝑧, so 𝑎 ≤ 𝑏

If 𝑎 ≤ 𝑏 and 𝑏 ≤ 𝑎 then 𝑎 = 𝑏



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑦 is a common divisor of 𝑎 and 𝑏.

By definition of gcd, 𝑦|𝑏 and 𝑦|(𝑎%𝑏). So it is enough to show that 𝑦|𝑎.

Applying the definition of divides we get 𝑏 = 𝑦𝑘 for an integer 𝑘, and 
𝑎%𝑏 = 𝑦𝑗 for an integer 𝑗.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞.

Plugging in both of our other equations:

𝑎 = 𝑞𝑦𝑘 + 𝑦𝑗 = 𝑦 𝑞𝑘 + 𝑗 . Since 𝑞, 𝑘, and 𝑗 are integers, 𝑦|𝑎. Thus 𝑦 is a 
common divisor of 𝑎, 𝑏 and thus 𝑦 ≤ 𝑥.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

By definition of gcd, x|𝑏 and 𝑥|𝑎. So it is enough to show that x|(𝑎%𝑏).

Applying the definition of divides we get 𝑏 = 𝑥𝑘′ for an integer 𝑘′, and 
a = 𝑥𝑗′ for an integer 𝑗′.

By definition of mod, 𝑎%𝑏 is 𝑎 = 𝑞𝑏 + 𝑎%𝑏 for an integer 𝑞

Plugging in both of our other equations:

𝑥𝑗′ = 𝑞𝑥𝑘′ + 𝑎%𝑏. Solving for 𝑎%𝑏, we have 𝑎%𝑏 = 𝑥𝑗′ − 𝑞𝑥𝑘′ =
𝑥 𝑗′ − 𝑞𝑘′ . So 𝑥|(𝑎%𝑏). Thus 𝑥 is a common divisor of 𝑏, 𝑎%𝑏 and thus 
𝑥 ≤ 𝑦.



gcd(a,b) = gcd(b, a % b)

Let x = gcd(𝑎, 𝑏) and 𝑦 = gcd(𝑏, 𝑎%𝑏).

We show that 𝑥 is a common divisor of 𝑏 and a%𝑏.

We have shown 𝑥 ≤ 𝑦 and 𝑦 ≤ 𝑥. 

Thus 𝑥 = 𝑦, and gcd 𝑎, 𝑏 = gcd 𝑏, 𝑎%𝑏 .


