Wrap_up Number CSE 311 Autumn 2023
TheO ry Lecture 15

Announcements

HW4 due tonight

HW5 comes out tonight as well.
HWS5 is 1.5 weeks, not 1 week!
Due Wed. Nov. 8

We recommend you aim to finish “Part 1" by next Friday (number theory proofs and
computations—about the length of a normal hw), and do “Part 2" (induction, topic
for next week, two proofs) after that.

but there's just one deadline. It's all due Wed. Nov 8.

Plan For Today

We don't expect you to fully absorb the new material today.
Our goals are:

1. See that number theory results can make code faster in unexpected
ways.

2. See a bit of code analysis (a preview of 332).

3. Hopefully say “oh neat, | understand a little bit about how secure
online communication works”

You should not expect to fully understand anything from today.

We're going to skip a bunch of slides today. If you're interested read them for fun. If
not, then skip them!

GCD and LCM

Greatest Common Divisor

The Greatest Common Divisor of a and b (gcd(a,b)) is the
largest integer ¢ such that c|a and c|b

Least Common Multiple

The Least Common Multiple of a and b (Icm(a,b)) is the
smallest positive integer ¢ such that a|c and b|c.

Try a few values...

(100,125)
gcd(17,49)
gcd(17,34)

(13,0)

gca

gca

lcm(7,17)
lcm(6,10)

How do you calculate a gcd?

You could:

Find the prime factorization of each

Take all the common ones. E.g.

gcd(24,20)=gcd(2° - 3,2% - 5) = 2*{min(2,3)} = 2”2 = 4.

(lcm has a similar algorithm — take the maximum number of copies of
everything)

But that's....really expensive. Mystery finds gcd.

1f (m<n) {
int temp = m;
m=n;
n=temp;

}

while(n !'= 0) {
int rem = m %
m=n;
n=temp;

}

return m;

public int Mystery(int m, 1nt

GCD fact

It a and b are positive integers, then gcd(a,b) = gcd(b, a % b)
Why is this true? The proof isn't easy, it's at the end of this deck.

Why should you care?

Remember everything we're

SO...What’S |t gOOd fOr? learning contributes to us

eventually understanding RSA.

Suppose | want to solve 7x = 3(mod n) This is a key step in generating keys.

Just multiply both sides by %
Oh wait. We want a number to multiply by 7 to get 1.

What number can we pick?

The next two slides are going to get more abstract...we're listing out the
facts we need to solve that equation.

Bezout's Theorem

Bézout’s Theorem
If a and b are positive integers, then there exist integers s

and t such that
gcd(a,b)= sa + tb

We're not going to prove this theorem...
But it turns out Mystery can be extended to find them.

You saw how to do that in section!

So..what's it good for?

Suppose | want to solve 7x = 3(mod n)

Just multiply both sides by %
Oh wait. We want a number to multiply by 7 to get 1.

It the gcd(7,n) =1
Thens-7+tn=1,507s —1=—tnie. n|(7s —1) so 7s = 1(mod n).
So the s from Bézout's Theorem is what we should multiply by!

Ok...how am | supposed to find s, t?

It turns out that while you're calculating the gcd (using the Mystery
algorithm), you can keep some extra information recorded, and end up

with the s, t
This is called the "extended Euclidian algorithm”

Examples in these slides.

Try 1t

Solve the equation 7y = 3(mod 26)

What do we need to find?
The multiplicative inverse of 7(mod 26)

Finding the inverse...

gcd(26,7) = gcd(/, 26%7) = gcd(7/,5)
= gcd(5, 7%5) = gcd(5,2)
= gcd(2, 5%2) = gcd(2, 1)

= gcd(1, 2%1) = gcd(1,0)= 1.

26=3-745;5=26 —3-7
7=5-142;2=7 - 5-1
5=2.-241;1=5— 2-2

1=5—2-2
=5-2(7=5-1)
=3.5-2-7
=3-(26—-3-7)—2-7
3.26—11-7

—11 is a multiplicative inverse of 7 for

(mod 26) arithmetic!
We’'ll write that as 15, since we're
working mod 26.

Try 1t
Solve the equation 7y = 3(mod 26)

What do we need to find?
The multiplicative inverse of 7 (mod 26). We found it's 15.

15-7-y=15-3(mod 26)

y = 45(mod 26)

Or y = 19(mod 26)

S026|19—vy,ie. 26k=19—y (forke€Z)ie.y=19—-26-kforanyk € Z
Solutions: {...,—7,19,45, ...19 + 26k, ...} i.e. {x:x = 19 4+ 26k for some k € Z}

[Proving the key fact about gcds

gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that y is a common divisor of a and b.
By definition of gcd, y|b and y|(a%b). So it is enough to show that y]a.

Applying the definition of divides we get b = yk for an integer k, and
(a%b) = yj for an integer j.

By definition of mod, a%b is a = gb + (a%b) for an integer q.
Plugging in both of our other equations:

a = qyk + yj = y(qgk + j).Since q,k, and j are integers, y|a. Thus y is a
common divisor of a, b and thus y < x.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that x is a common divisor of b and a%b.
By definition of gcd, x|b and x|a. So it is enough to show that x|(a%b).

Applying the definition of divides we get b = xk' for an integer k', and
a = xj' for an integer j'.

By definition of mod, a%b is a = gb + (a%b) for an integer q
Plugging in both of our other equations:

xj' = qxk’ + a%b. Solving for a%b, we have a%b = xj' — qxk’ =
x(j" — qk"). So x|(a%b). Thus x is a common divisor of b, a%b and thus
X=<Yy.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that x is a common divisor of b and a%b.

We have shown x < yand y < x.
Thus x =y, and gcd(a, b) = gcd(b, a%b) .

I~ Euclidian Algorithm

while(n !'= 0) {

Euclid’s Algorithm

n=rem;

9cd(660,126)

while(n != 0) {

Euclid’s Algorithm

n=rem;

}

gcd(660,126) = gcd(126, 660 mod 126) = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
=6

660 =5:126| + 30 Starting Numbers
126 =4- 30 +(6
30 =5- 6 + 0 Final

answer

Bezout's Theorem

Bézout’s Theorem
If a and b are positive integers, then there exist integers s

and t such that
gcd(a,b)= sa + tb

We're not going to prove this theorem...

But we'll show you how to find s,t for any positive integers a, b.

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

gcd(35,27)

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

gcd(35,27) = gcd(27, 35%27) = gcd(27,8) 35=1-27 +8
= gcd(8, 27/%8) = gcd(8, 3) 27=3- 8 +3
= gcd(3, 8%3) = gcd(3, 2) 8 =2- 3 +2
= gcd(2, 3%2) = gcd(2,1) 3 =1- 2 +1
= gcd(T1, 2%T1) = gcd(1,0)

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

35=1-27 +8
27=3- 8 +3
8 =2- 3 +2
3 =1- 2 +1

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

35=1-27 +8 8=35—-1-27
27=3- 8 +3 3=27—3- 8
8 =2- 3 +2 2 =8 — 2- 3

3 =1- 2 +1 1 =3—1- 2

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

1=3-1-2
8=35—1-27 =3-1-8-2:3)
3=27 —3- 8 Sohetes

Extended Euclidian Algorithm

Step 1 compute gcd(a,b); keep tableau information.
Step 2 solve all equations for the remainder.
Step 3 substitute backward

1=3-1-2

8=35—1-27 =3-1-8-2:3)
=—-1-8+3-3

3=27—3-8 = -1-8+3(27—38)

2 =8 — 2- 3 =3-27-10-8

1 =3 —1- 2 =3-27-10(35—-1-27)

=13-27-10-35

gcd(27,35) = 13- 27 + (—10) - 35

When substituting
back, you keep
the larger of m, n
and the number
you just
substituted.

Don’t simplify
further! (or you
lose the form you
need)

‘ RSA Encryption

Key Steps in RSA

Given two numbers, we can find their gcd quickly.
If we have an equation
ax = b(mod n)

And gcd(a,n) = 1 then we can quickly find a number to multiply the
equation by to solve for x.

Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Key generation [edit]
The keys for the RSA algorithm are generated in the following way:

1. Choose two distinct prime numbers p and gq.
e For security purposes, the integers p and g should be chosen at random and should be similar in magnitude but differ in length by a few digits to make factoring harder.[2! Prime integers can be efficiently found using a primality
test.
¢ p and g are kept secret.
2. Compute n = pg.
¢ nis used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key length.
¢ nis released as part of the public key.
3. Compute A(n), where A is Carmichael's totient function. Since n = pg, A(n) = lem(A(p), A(g)), and since p and g are prime, A(p) = @(p) = p — 1, and likewise A(g) = g — 1. Hence A(n) = lem(p -1, g — 1).
¢ A(n) is kept secret.
¢ The lcm may be calculated through the Euclidean algorithm, since lcm(a, b) = |ab|/gcd(a, b).
4. Choose an integer e such that 1 < e < A(n) and gcd(e, A(n)) = 1; that is, e and A(n) are coprime.
¢ e having a short bit-length and small Hamming weight results in more efficient encryption — the most commonly chosen value for e is 276 4+ 1 = 65 537. The smallest (and fastest) possible value for e is 3, but such a small value
for e has been shown to be less secure in some settings.[19)
¢ ¢ is released as part of the public key.
5. Determine d as d = e”' (mod A(n)); that is, d is the modular multiplicative inverse of e modulo A(n).
¢ This means: solve for d the equation d-e = 1 (mod A(n)); d can be computed efficiently by using the extended Euclidean algorithm, since, thanks to e and A(n) being coprime, said equation is a form of Bézout's identity, where d is
one of the coefficients.
e d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the private (or decryption) exponent d, which must be kept secret. p, g, and A(n) must also be kept secret because they can be

used to calculate d. In fact, they can all be discarded after d has been computed.[m]

Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Key generation [edit] Prime Numbers

The keys for the RSA algorithm are genera

1. Choose two distinct prime numbers p and gq.

e For security purposes, the integers p and g should be chosen at random and should be similar in magnitude but differ in length by a few digits to make factoring harder.[2! Prime integers can be efficiently found using a primality
test.

* pand g are kept secret. Modular Arithmetic
2. Compute n = pg.

¢ nis used as the modulus for both the public and private keys. Its length, usually expressed in bits, is the key length.
¢ nis released as part of the public key.

3. Compute A(n), where A is Carmichael's totient function. Since n = pg, A(n) = lem(A(p), A(g)), and since p and g are prime, A(p) = @(p) = p — 1, and likewise A(q) = g — 1. Hence A(n) =lem(p -1, g — 1).

¢ A(n) is kept secret.

e The lcm may be calculated through the Euclidean algorithm, since lcm(a, b) MOdUIG r MUITI pllcq“ve Inve rse

4. Choose an integer e such that 1 < e < A(n) and gcd(e, A(n)) = 1; that is, e and A(

¢ e having a short bit-length and small Hamming weight results in more efficient eng e most commonly chosen value for e is 218 + 1 = 65 537. The smallest (and fastest) possible value for e is 3, but such a small value

for e has been shown to be less secure in some settings.[19)
e ¢ is released as part of the public key. BeZOUt’S Theorem
5. Determine d as d = ' (mod A(n)); that is, d is the modular multiplicative inverse of @ modulo A(n).
* This means: solve for d the equation d-e = 1 (mod A(n)); d can be computed efficiently by using the extended Euclidean algorithm, since, thanks to e and A(n) being coprime, said equation is a form of Bézout's identity, where d is
one of the coefficients.

e d is kept secret as the private key exponent.

The public key consists of the modulus n and the public (or encryption) exponent e. The private key consists of the private (or decryp Ex'rend ed EUCIid id n Alg ori'rhm also be kept secret because they can be

used to calculate d. In fact, they can all be discarded after d has been computed.[m]

Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Encryption [edit]
After Bob obtains Alice's public key, he can send a message M to Alice.

To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer m (strictly speaking, the padded plaintext), such that 0 < m < » by using an agreed-upon reversible protocol known as a padding scheme. He then

computes the ciphertext ¢, using Alice's public key e, corresponding to
ce=m° (mod n).
This can be done reasonably quickly, even for very large numbers, using modular exponentiation. Bob then transmits ¢ to Alice. Note that at least nine values of m will yield a ciphertext ¢ equal to m,[22] but this is very unlikely to occur in

practice.

Decryption [edit]
Alice can recover n1 from ¢ by using her private key exponent d by computing
¢t =(m%)*=m (mod n).

Given m1, she can recover the original message M by reversing the padding scheme.

Framing Device

We're going to give you enough background to (mostly) understand the
RSA encryption system.

Encryption [edit]
After Bob obtains Alice's public key, he can send a message M to Alice.

To do it, he first turns M (strictly speaking, the un-padded plaintext) into an integer m (strictly speaking, the padded plaintext), such that 0 < m < » by using an agreed-upon reversible protocol known as a padding scheme. He then

computes the ciphertext ¢, using Alice's public key e, corresponding to
ce=m° (mod n).
This can be done reasonably quickly, even for very large numbers, using modular exponentiation. Bob then transmits ¢ to Alice. Note that at least nine values of m will yield a ciphertext ¢ equal to m,[22] but this is very unlikely to occur in

practice.

Decryption |eit] Modular Exponentiation

Alice can recover n1 from ¢ by using her private key exponent d by computing
¢t =(m%)*=m (mod n).

Given 1, she can recover the original message M by reversing the padding scheme.

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, g and
an exponent e (often about 60,000).

Amazon calculates n = pq. They tell your computer (n,e) (not p, q)

You want to send Amazon your credit card number a.

You compute € = a®%n and send Amazon C.

Amazon computes d, the multiplicative inverse of e (mod [p — 1][q — 1])

Amazon finds C%%n

Fact: a = C%%mn aslongas0<a<nandptaandqta

How big are those numbers?

1230186684530117755130494958384962720772853569595334792197322
452151726400507263657518745202199786469389956474942777400638459
2519255732630345373154826850791702612214291346167042921431160
2221240479274737794080065351419597459850902143413

3347807169895689878604416984821269081770479498371376856891243
1388982883793878002287614711652531743087737814467999489

X

36746043666799590428244633799627952632279158164343087064267603
22838157396006511279233373417143396810270092798736308917

How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on HW5. It's a
nice combination of lots of things we've done with modular arithmetic.

Let’s talk about finding € = a®%n.

e is a BIG number (about 21¢ is a common choice)
int total = 1;

for(int 1 = 0; 1 < e; i++){

total = (a * total) % n;

[Fast Exponentiation Algorithm

Let's build a faster algorithm.

Fast exponentiation — simple case. What if e is exactly 216?
int total = 1;

for(int i = 0; 1 < e; i++) {
total = a * total % n;

}

Instead:

int total = a;

for(int 1 = 0; 1 < log(e); 1i++){

O

total = total”™2 % n;

Fast Exponentiation Algorithm

What if e isn't exactly a power of 27?

Step 1. Write e in binary.

Step 2: Find a“%n for ¢ every power of 2 up to e.

Step 3: calculate a® by multiplying a€ for all ¢ where binary expansion of
e had a 1.

Fast Exponentiation Algorithm

Find 4'19%10
Step 1: Write e in binary.
Step 2: Find a“%n for ¢ every power of 2 up to e.

Step 3: calculate a® by multiplying a® for all ¢ where binary expansion of
e had a 1.

Start with largest power of 2 less than e (8). 8's place gets a 1. Subtract power

Go to next lower power of 2, if remainder of e is larger, place gets a 1, subtract
power; else place gets a 0 (leave remainder alone).

1M=1011,

Fast Exponentiation Algorithm

Find 411910
Step 1: Write e in binary.
Step 2: Find a“%n for ¢ every power of 2 up to e.

ﬁtedp 3: calculate a® by multiplying a® for all ¢ where binary expansion of e
ad a 1.

41%10 = 4
42%10 = 6
4%%10 = 6°%10 = 6
48%10 = 6°%10 = 6

Fast Exponentiation Algorithm

Find 4119410
Step 1: Write e in binary.
Step 2: Find a“%n for ¢ every power of 2 up to e.

ﬁteo 3: calculate a® by multiplying a¢ for all ¢ where binary expansion of e
ad a 1.

410410 = 4 4110410 = 48+2+10410 =
20,101 — [(48%10) - (4%10) - (4%10)]%10 = (6 - 6 - 4)%10
10 =06 = (36%10 - 4)%10 = (6 - 4)%10 = 24%10 = 4.

440410 = 629%10 = 6
480410 = 6%2%10 = 6

Fast Exponentiation Algorithm

s it...actually fast?

The number of multiplications is between log, e and 2 log, e.

That's A LOT smaller than e

One More Example for Reference

Find 32°%7 using the fast exponentiation algorithm.

Find 25 in binary:
16 is the largest power of 2 smaller than 25. (25 — 16) = 9 remaining
8 is smaller than 9. (9 — 8) = 1 remaining.
4s place gets a 0.
2s place gets a 0
1s place gets a 1
11001,

One More Example for Reference

Find 32°%7 using the fast exponentiation algorithm.

Find 32'9%7 -

31%7 =3

32%7 = 9%7 = 2

3*%7 = (3% - 3*)%7 = (2-2)%7 = 4
38067 = (3* - 3*)%7 = (4 - 1) %7 = 2
316047 = (3% -3%)%7 = (2- 2)%7 = 4

One More Example for Reference

Find 32°%7 using the fast exponentiation algorithm.

31%7 — 3 325%7 — 316+8+1%7
20,7 — = [(3%%7) - (32%7) - (3'%7)]|%7
3°07 =2 =[4-2-3]%7
34047 = 4 = (1-3)%7 =3
38047 = 2

31°%7 = 4

A Brief Concluding Remark

Why does RSA work? i.e. why is my credit card number “secret”?

Raising numbers to large exponents (in mod arithmetic) and finding
multiplicative inverses in modular arithmetic are things computers can

do quickly.
But factoring numbers (to find p, g to get d) or finding an “exponential

inverse” (not the real term) directly are not things computers can do
quickly. At least as far as we know.

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, q and
an exponent e (often about 60,000).

Amazon calculates n = pq. They tell your computer (n, e) (not p, q)

You want to send Amazon your credit card number a.

You compute C = a®%n and send Amazon C.

Amazon computes d, the multiplicative inverse of e (mod [p — 1][q — 1])

Amazon finds C%%n

Fact: a = C%%mn aslongas0<a<nandptaandqta

‘ If we have time...

We skipped some proofs...

..you've had a lot of good questions!
We missed:

A proof where we got stuck: main message, work from both ends! Be willing
to erase things and try again!

Lecture 12, Slide 34

More practice with proof by contradiction.
Lecture 13, Slide 24

More practice with number theory definitions
End of this slide deck.

If we have time we'll practice them now. Otherwise we'll leave you to try them
on your own.

https://courses.cs.washington.edu/courses/cse311/23au/lecture/12-more-numbers.pdf#page=34
https://courses.cs.washington.edu/courses/cse311/23au/lecture/13-contradiction.pdf#page=24

‘ Extra Practice!

Equivalence in modular arithmetic

Warm up leta€Z b€eZneZandn > 0.

We say a = b (mod n) if and only if n|(b — a)

Show that a = b (mod n) if and only if b = a(mod n)

Show that a%n=(a — n)%n Where b%c is the unique r such that b =
kc + r for some integer k.

The Division Theorem

Foreverya€Z,d € Z withd >0
There exist unique integers q,r with 0 < r < d Such thata = dq + r

Warm up

Show that a = b (mod n) if and only if b = a(mod n)
a=b(modn) on|(b—a)eonk=>b—a(fork €Z) <
n(—k) =a—b(for —k€Z) & n|(a—»b) & b = a(mod n)

Show that a%n=(a — n)%n Where b%c is the unique r such that b =
kc + r for some integer k.

By definition of %, a = gqn + (a%n) for some integer q. Subtracting n,

a—n=(q—1)n+ (a%n). Observe that g — 1 is an integer, and that
this is the form of the division theorem for (a — n)%n. Since the division
theorem guarantees a unique integer, (a — n)%n = (a%n)

% and Mod

Other resources use mod to mean an operation (takes in an integer,
outputs an integer). We will not in this course. mod only describes =. It's
not “just on the right hand side”

Define a%b to be "the r you get from the division theorem”
..e. the integer r such that 0 < r < d and a = bq + r for some integer q.

This is the “mod function”

| claim a%n = b%n if and only if a = b(mod n).

How do we show and if-and-only-if?

a%n = b%n if and only if a = b(mod n)

Backward direction:
Suppose a = b(mod n)

a%n = (b — nk)%n = b%n

a%n = b%n 1f and only if a = b(mod n)

Backward direction:

Suppose a = b(mod n)

n|b —a so nk = b — a for some integer k. (by definitions of mod and
divides).

Soa=b—nk
Taking each side %n we get:
a%n = (b — nk)%n = b%n

Where the last equality follows from k being an integer and doing k
applications of the identity we proved in the warm-up.

a%n = b%n if and only if a = b(mod n)

Show the forward direction:

It a%n = b%n then a = b(mod n).

This proof is a bit different than the other direction.
Remember to work from top and bottom!!

Equivalence in modular arithmetic

leta €Z,b € Z,n € Zandn > 0.
We say a = b (mod n) if and only if n|(b — a)
The Division Theorem

Foreverya€Z,d € Z withd >0
There exist unique integers q,r with 0 < r < d Such thata = dq + r

a%n = b%n 1f and only if a = b(mod n)

Forward direction:
Suppose a%n = b%n.
By definition of %,a = kn + (a%n) and b = jn + (b%n) for integers k, j

Isolating a%n we have a%n = a — kn. Since a%n = b%n, we can plug
into the second equation to get: b = jn 4+ (a — kn)

Rearranging, we have b —a = (j — k)n. Since k, j are integers we have
n|(b —a).

By definition of mod we have a = b(mod n).

I~ More Number Theory Proofs

Caution

To fit proofs on these slides, | skipped some of the boilerplate steps (e.g.
introducing variables as arbitrary, including a conclusion)

Don't skip those on your homework/midterm, please ©

Equivalence in modular arithmetic

Warm up leta€Z b€eZneZandn > 0.

We say a = b (mod n) if and only if n|(b — a)

Show that a = b (mod n) if and only if b = a(mod n)

Show that a%n=(a — n)%n Where b%c is the unique r such that b =
kc + r for some integer k.

The Division Theorem

Foreverya€Z,d € Z withd >0
There exist unique integers q,r with 0 < r < d Such thata = dq + r

Warm up

Show that a = b (mod n) if and only if b = a(mod n)
a=b(modn) on|(b—a)eonk=>b—a(fork €Z) <
n(—k) =a—b(for —k€Z) & n|(a—»b) & b = a(mod n)

Show that a%n=(a — n)%n Where b%c is the unique r such that b =
kc + r for some integer k.

By definition of %, a = gqn + (a%n) for some integer q. Subtracting n,

a—n=(q—1)n+ (a%n). Observe that g — 1 is an integer, and that
this is the form of the division theorem for (a — n)%n. Since the division
theorem guarantees a unique integer, (a — n)%n = (a%n)

Modular arithmetic so far

For all integers a, b, c,d,n where n > 0:

It a = b(mod n) then a + ¢ = a + c(mod n).
It a = b(mod n) then ac = bc (mod n).
a = b(mod n) if and only it b = a (mod n).

a%n = (a — n)%n.

% and Mod

Other resources use mod to mean an operation (takes in an integer,
outputs an integer). We will not in this course. mod only describes =. It's
not “just on the right hand side”

Define a%b to be "the r you get from the division theorem”
..e. the integer r such that 0 < r < d and a = bq + r for some integer q.

This is the “mod function”

| claim a%n = b%n if and only if a = b(mod n).

How do we show and if-and-only-if?

a%n = b%n if and only if a = b(mod n)

Backward direction:
Suppose a = b(mod n)

a%n = (b — nk)%n = b%n

a%n = b%n 1f and only if a = b(mod n)

Backward direction:

Suppose a = b(mod n)

n|b —a so nk = b — a for some integer k. (by definitions of mod and
divides).

Soa=b—nk
Taking each side %n we get:
a%n = (b — nk)%n = b%n

Where the last equality follows from k being an integer and doing k
applications of the identity we proved in the warm-up.

a%n = b%n if and only if a = b(mod n)

Show the forward direction:

It a%n = b%n then a = b(mod n).

This proof is a bit different than the other direction.
Remember to work from top and bottom!!

Equivalence in modular arithmetic

leta €Z,b € Z,n € Zandn > 0.
We say a = b (mod n) if and only if n|(b — a)
The Division Theorem

Foreverya€Z,d € Z withd >0
There exist unique integers q,r with 0 < r < d Such thata = dq + r

Pollev.com /uwcse311

a%n = b%n 1f and only if a = b(mod n)

Forward direction:
Suppose a%n = b%n.
By definition of %,a = kn + (a%n) and b = jn + (b%n) for integers k, j

Isolating a%n we have a%n = a — kn. Since a%n = b%n, we can plug
into the second equation to get: b = jn 4+ (a — kn)

Rearranging, we have b —a = (j — k)n. Since k, j are integers we have
n|(b —a).

By definition of mod we have a = b(mod n).

F Why does the Euclidian
Algorithm Work?

Correctness of an algorithm

The key to the Euclidian Algorithm being correct is that each time
through the loop, you don’t change the gcd of the variablesm, n.

To prove the code correct, you really want an induction proof (it's good

practice to think about it!). The inductive step relies on the fact we
stated but didn't prove:

gcd(a,b) = gcd(b, asb).

Let's prove it!

GCD fact

It a and b are positive integers, then gcd(a,b) = gcd(b, a % b)

How do you show two gcds are equal?
Call a = ged(w, x), b = gcd(y, z)

f blw and b|x then b is a common divisor of w,x so b < a
faly and a|z then a is a common divisor of y,z,soa < b
fa<bandb <athena=5»

gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that y is a common divisor of a and b.
By definition of gcd, y|b and y|(a%b). So it is enough to show that y]a.

Applying the definition of divides we get b = yk for an integer k, and
(a%b) = yj for an integer j.

By definition of mod, a%b is a = gb + (a%b) for an integer q.
Plugging in both of our other equations:

a = qyk + yj = y(qgk + j).Since q,k, and j are integers, y|a. Thus y is a
common divisor of a, b and thus y < x.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that x is a common divisor of b and a%b.
By definition of gcd, x|b and x|a. So it is enough to show that x|(a%b).

Applying the definition of divides we get b = xk' for an integer k', and
a = xj' for an integer j'.

By definition of mod, a%b is a = gb + (a%b) for an integer q
Plugging in both of our other equations:

xj' = qxk’ + a%b. Solving for a%b, we have a%b = xj' — qxk’ =
x(j" — qk"). So x|(a%b). Thus x is a common divisor of b, a%b and thus
X=<Yy.

gcd(a,b) = gcd(b, a % b)

Let x = gcd(a, b) and y = gcd(b, a%b).
We show that x is a common divisor of b and a%b.

We have shown x < yand y < x.
Thus x =y, and gcd(a, b) = gcd(b, a%b) .

