Try it

Solve the equation $7y \equiv 3 \pmod{26}$

What do we need to find?
The multiplicative inverse of $7 \pmod{26}$

An application of all of this modular arithmetic

Amazon chooses random 512-bit (or 1024-bit) prime numbers p, q and an exponent e (often about 60,000).

Amazon calculates $n = pq$. They tell your computer (n, e) (not p, q)

You want to send Amazon your credit card number a.

You compute $C = a^e \pmod{n}$ and send Amazon C.

Amazon computes d, the multiplicative inverse of $e \pmod{(p-1)(q-1)}$

Amazon finds $C^d \pmod{n}$

Fact: $a = C^d \pmod{n}$ as long as $0 < a < n$ and $p \nmid a$ and $q \nmid a$
Let’s build a faster algorithm.

Fast exponentiation – simple case. What if e is exactly 2^{16}?

```java
int total = 1;
for(int i = 0; i < e; i++){
    total = a * total % n;
}
```

Instead:

```java
int total = a;
for(int i = 0; i < log(e); i++){
    total = total^2 % n;
}
```

Fast Exponentiation Algorithm

What if e isn’t exactly a power of 2?

Step 1: Write e in binary.

Step 2: Find $a^c \mod n$ for c every power of 2 up to e.

Step 3: calculate a^e by multiplying a^c for all c where binary expansion of e had a 1.