Divides

For integers x, y we say $x|y$ ("x divides y") iff there is an integer z such that $xz = y$.

Which of these are true?

2|4 4|2 2|−2
5|0 0|5 1|5

A useful theorem

The Division Theorem

For every $a \in \mathbb{Z}, d \in \mathbb{Z}$ with $d > 0$
There exist unique integers q, r with $0 \leq r < d$
Such that $a = dq + r$

Remember when non integers were still secret, you did division like this?

q is the "quotient"
r is the "remainder"
Claim: for all \(a, b, c, n \in \mathbb{Z}, n > 0 \): \(a \equiv b \mod n \rightarrow a + c \equiv b + c \mod n \)

Before we start, we must know:
1. What every word in the statement means.
2. What the statement as a whole means.
3. Where to start.
4. What your target is.

Divides

For integers \(x, y \) we say \(x|y \) ("\(x \) divides \(y \)"") iff there is an integer \(z \) such that \(xz = y \).

Equivalence in modular arithmetic

Let \(a \in \mathbb{Z}, b \in \mathbb{Z}, n \in \mathbb{Z} \) and \(n > 0 \).
We say \(a \equiv b \mod n \) if and only if \(n|(b - a) \).

Another Proof

For all integers, \(a, b, c \): Show that if \(a \nmid (bc) \) then \(a \nmid b \) or \(a \nmid c \).

Proof:

Let \(a, b, c \) be arbitrary integers, and suppose \(a \nmid (bc) \).
Then there is not an integer \(z \) such that \(az = bc \)
...

So \(a \nmid b \) or \(a \nmid c \)