A More Complicated Statement

“Robbie knows the Pythagorean Theorem if he is a mathematician and took geometry, and he is a mathematician or did not take geometry.”

Is this a proposition?

We’d like to understand what this proposition means.

In particular, is it true?

Law of Implication

Implications are hard. AND/OR/NOT make more intuitive sense to me... can we rewrite implications using just ANDs ORs and NOTs?

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>p → q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

One approach: think “when is this implication false?” then negate it (you might want one of DeMorgan’s Laws!)
Properties of Logical Connectives

These identities hold for all propositions p, q, r

- **Identity**
 - $p \land T \equiv p$
 - $p \lor F \equiv p$
- **Domination**
 - $p \lor T \equiv T$
 - $p \land F \equiv F$
- **Idempotent**
 - $p \lor p \equiv p$
 - $p \land p \equiv p$
- **Commutative**
 - $p \lor q \equiv q \lor p$
 - $p \land q \equiv q \land p$
- **Associative**
 - $(p \lor q) \lor r \equiv p \lor (q \lor r)$
 - $(p \land q) \land r \equiv p \land (q \land r)$
- **Distributive**
 - $p \land (q \lor r) \equiv (p \land q) \lor (p \land r)$
 - $p \lor (q \land r) \equiv (p \lor q) \land (p \lor r)$
- **Absorption**
 - $p \lor (p \land q) \equiv p$
 - $p \land (p \lor q) \equiv p$
- **Negation**
 - $p \lor \neg p \equiv T$
 - $p \land \neg p \equiv F$

Our First Proof

$$(a \land b) \lor (\neg a \land b) \lor (\neg a \land \neg b) \equiv$$

None of the rules look like this

Practice of Proof-Writing:

Big Picture...WHY do we think this might be true?

The last two "pieces" came from the vacuous proof lines...maybe the "$\neg a$" came from there? Maybe that **simplifies** down to $\neg a$