
CSE 311 : Winter 2022 Final Exam Solutions

Instructions

• You have one-hour and fifty-minutes to complete this exam.

• You are permitted one piece of 8.5x11 inch paper with handwritten notes.

• You may not use a calculator or any other electronic devices during the exam.

• We will be scanning your exams before grading them. Please write legibly, and avoid writing up to the edge
of the paper.

• If you run out of room, indicate (e.g. with an arrow) that you’re going to use the back of the sheet, and
continue writing there.

• You may also use the last page for extra space, but tell us where to find your answer if it’s not right below the
problem.

Advice

• Remember to properly format English proofs (e.g. introduce all your variables).

• All proofs for this exam must be English proofs.

• We give partial credit for the beginning and end of a proof. Even if you don’t know how the middle goes, you
can write the start of the proof and put the “target” and conclusion at the bottom.

• Remember to take deep breaths.

Question Max points

Training Wheels 12
Set Proofs 10
Models of Computation 12
Induction I 20
Now, False or True 9
Induction II 21
Wait, That’s Illegal 15
Grading Morale 1

Total 100

1



1. Training Wheels [12 points]

Let your domain of discourse be all fruits and all people.
Use the predicates IsApple, IsOrange, IsBanana, Doctor, Fruit, Person to do domain restriction.
You can also use the predicate Likes(x, y), which is true if and only if x likes y.
You may also use quantifiers, standard logical notation (e.g., ↔,∧, etc.), and =, but you may not introduce other
predicates.

In addition to introducing variables, you can also use the constants Robbie, Allie.

(a) Robbie likes all apples.

Solution:

Among all fruits, Robbie likes all apples.

If f is a fruit, then if f is an apple, then Robbie likes it.

∀f(Fruit(f) → [IsApple(f) → Likes(Robbie, f)])

An Apple is already a fruit, so there is no need to actually state Fruit(f).

If a is an apple, then Robbie likes a

∀a(IsApple(a) → Likes(Robbie, a))

(b) There is a fruit that every doctor likes, and this fruit is not an orange.

Solution:

In this case you must state both Fruit(f) and IsOrange(f).

There exists a fruit f that is not an orange such that if d is a doctor, then d likes f .

∃f(Fruit(f) ∧ ¬ IsOrange(f) ∧ ∀d[Doctor(d) → Likes(d, f)])

(c) Among all fruits, Allie likes only bananas.

Solution:

Similar approach to problem a, but predicates are switched. We must also use both Fruit() and isBanana().
Note that the implication goes only in one direction! This statement says Allie doesn’t like oranges, grapes,
etc. It doesn’t necessarily state that Allie likes all of the bananas.

If f is a fruit, then if Allie likes it, then it must be a banana.

∀f(Fruit(f) → [Likes(Allie, f) → IsBanana(f)])

If f is a fruit and Allie likes it, then it must be a banana.

∀f([Fruit(f) ∧ Likes(Allie, f)] → IsBanana(f))

If f is a fruit and f is not a banana, then Allie does not like f .

∀f([Fruit(f) ∧ ¬ IsBanana(f)] → ¬ Likes(Allie, f))
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Take the contrapositive of this implication (leave your answer in English, you do not need to show work). Your
answer must be simplified (e.g. negations should apply to individual predicates/propositions; you should not need
phrases like “it is not the case that...”)

(d) “If you like apples or you like oranges, then you must also like grapes and pineapples.”

Solution:

If you don’t like grapes or you don’t like pineapples, then you won’t like apples and you won’t like oranges.

2. A Set Proof [10 points]

Let S = {x ∈ Z : x ≡ 1 (mod 5)} and let T = {x ∈ Z : x ≡ 1 (mod 15)}.

(a) Prove that T ⊆ S. [7 points] Solution:

Let x be an arbitrary element of T . By definition of T , x ≡ 1 (mod 15). Applying the definition of mod, we
have 15 | (1− x). Applying the definition of divides, we know there is an integer z such that 15z = 1− x.

Rearranging, we have 5 · (3z) = 1−x. Since z is an integer, 3z is an integer, so we can apply the definition
of divides to get 5 | (1 − x) and so 1 ≡ x (mod n). Thus x ∈ S by definition of S, and we can conclude
T ⊆ S.

(b) Prove that S 6⊆ T . [3 points] Solution:

Note that 11 ∈ S, as 5 | (11− 1), but 11 6∈ T , as 15 - (11− 1). Since there is at least one element in S but
not T , S 6⊆ T .
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3. Models of Computation [12 points]

Let Σ = {1, 2, 3, 4} and let L be the language containing all strings w where w is nondecreasing.

We define a string w as nondecreasing if for all k, the character at index k is greater than or equal to all the numbers
to the left, meaning the number at index k is greater than or equal to each of the numbers at indices 0 to k−1.

Some example nondecreasing strings are:

• ε (this string vacuously meets the definition of nondecreasing)

• 13 (3 ≥ 1)

• 11223334

An example on an invalid string (one not in the language) is 132, as 3 > 2.

(a) Write a regular expression that matches L. (No explanation required).

Solution:

(1)∗(2)∗(3)∗(4)∗

(b) Write a CFG that generates L.
Be sure to tell us which symbol is the start symbol; also include a sentence or two of explanation of how your
CFG works.

Solution:

S is the start symbol. If the string is nondecreasing then all 1’s come before any 2’s which come before 3’s
which come before 4’s. So we split the string into those sections (any or all of which can be the empty
string).

S → ABCD | ε
A → 1A | ε
B → 2B | ε
C → 3C | ε
D → 4D | ε
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4. Induction I [20 points]

Consider this function f , that takes in a natural number and outputs a natural number:

f(n) =


2 · f(n− 1) + 2 · f(n− 2) + 3n−2 if n ≥ 2

3 if n = 1

1 if n = 0

Use induction to show f(n) = 3n for all natural numbers n.
Remember to explicitly define a predicate P () as part of your proof.

Solution:

Let P (n) be “f(n) = 3n”. We show P (n) holds for all n ∈ N by induction.

Base Case (n = 0): f(0) = 1 = 30

Base Case (n = 1): f(1) = 3 = 31

Inductive Hypothesis: Suppose P (0) ∧ P (1) ∧ . . . ∧ P (k) holds for an arbitrary k ≥ 1.

Inductive Step:

f(k + 1) = 2 · f(k) + 2 · f(k − 1) + 3k−1 definition of f

= 2 · 3k + 2 · 3k−1 + 3k−1 by IH twice

= 2 · 3k + 3 · 3k−1 combining like terms of 3k−1

= 2 · 3k + 3k = 3 · 3k = 3k+1 algebra

So P (k + 1) holds.

By the principle of induction, P (n) holds for all n ∈ N.
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5. Now, False or True [9 points]

For the following questions, determine whether the statement is true or false, and write “T” or “F” on the line
provided. Then provide 1-3 sentences of explanation. Your explanations do not need to be full or formal proofs,
intuitive justifications are fine.

(a) F It is always incorrect to perform a strong induction proof with a single base case.

Solution:

False. We’ve seen examples of strong induction with a single base case. For example, the apples-to-apples
question (homework 6, question 6) and the proof of the existence of prime factorizations in lecture.

We also accepted statements like “You can always turn a weak IH into a strong IH and the IS is still correct.”
and “As long as the IS uses something assumed by the IH, the proof will be correct” and “You need multiple
base cases when your IS would need to go back multiple steps, which doesn’t always happen with strong
hypotheses.”

(b) F “p is sufficient for q” and “q is necessary for p”, are both best translated as p → q.

Solution:

True. Both are p → q. The first says that p is enough for you to guarantee q must follow (i.e., p → q) the
second says that in order for p to occur, q must occur. So when p happens q must have happened to (thus
p → q).

(c) F Suppose you wish to prove the implication p → q. One way to prove the claim is to show the converse
q → p is false. Since converses are different from each other, you can conclude p → q must be true.

Solution:

False. There are implications where both the converse and the original statement are true, so this is not
a valid proof technique.
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6. Induction II [21 points]

You’ll see “up-trees” in your data structures class. Every up-tree, T , has a number of nodes (which we call Nodes(T ))
and a “rank” (think of it as a measure of size), which we denote by Rank(T ).

Up-trees are defined with the following recursive definition:

Basis Step: A single node is an up-tree.
Nodes(T ) = 1 and Rank(T ) = 0 when T is a single node.

Recursive Steps: There are three ways to make new up-trees. You should both read the rules on this page and
look at the examples on the next page.

• Combine 1 Given two up-trees S and T where Rank(S) = Rank(T ), you can make a new combined up-tree,
N , by making the root of T be the root of N , and making the root of S a child of the root of T .

In this case: Nodes(N) = Nodes(S) + Nodes(T ) and Rank(N) = 1 + Rank(T ).

• Combine 2 Given two up-trees, S, T , where Rank(S) < Rank(T ), you can make a new combined up-tree, N ,
by making the root of T be the root of N , and making the root of S a child of the root of T .

In this case: Nodes(N) = Nodes(S) + Nodes(T ) and Rank(N) = Rank(T ).

• Compress Given one up-tree, S, you can “compress” it into a new up-tree, N , by keeping the root the same
and making all other nodes direct children of the root.

In this case: Nodes(N) = Nodes(S) and Rank(N) = Rank(S).

Prove using structural induction that Nodes(T ) ≥ 2Rank(T ) holds for all up-trees T .

Solution:

Let P (T ) be “Nodes(T ) ≥ 2Rank(T )”. We prove P (T ) holds for all up-trees T by structural induction on T .

Base Case (T = Node): By basis definitions, Nodes(T ) = 1 ≥ 1 = 20 = 2Rank(T ), so P (Node) holds.

Let N be an arbitrary up-tree not covered by the base cases. By the exclusion rule, N was made using Combine
1 on S, T or N was made using Combine 2 on S, T or N was made using Compress on S.

Inductive Hypothesis: Suppose P (S) and P (T ) hold for up-trees S and T .

Inductive Step: There are three inductive steps, one for each recursive rule.

• Case 1 Combine 1: Suppose that Rank(S) = Rank(T ), and we use Combine 1 to generate the next tree
N .

Goal: Show Nodes(N) ≥ 2Rank(N), i.e. Nodes(S) + Nodes(T ) ≥ 21+Rank(T )

Nodes(N) = Nodes(S) + Nodes(T ) since Nodes(N) = Nodes(S) + Nodes(T )

≥ 2Rank(S) + 2Rank(T ) IH

= 2Rank(T ) + 2Rank(T ) since Rank(S) = Rank(T )

= 2 · 2Rank(T )

= 21+Rank(T )

= 2Rank(N) since Rank(N) = 1 + Rank(T )

• Case 2 Combine 2: Suppose Rank(S) < Rank(T ), and we use Combine 2 to generate the next tree N .
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Goal: Show Nodes(N) ≥ 2Rank(N), i.e. Nodes(S) + Nodes(T ) ≥ 2Rank(T )

Nodes(N) = Nodes(S) + Nodes(T ) since Nodes(N) = Nodes(S) + Nodes(T )

≥ 2Rank(S) + 2Rank(T ) IH

≥ 2Rank(T ) since 2Rank(S) + 2Rank(T ) ≥ 2Rank(T )

= 2Rank(N) since Rank(N) = Rank(T )

• Case 3 Compress: Suppose we Compress the up-tree S to create the next tree N .

Goal: Show Nodes(N) ≥ 2Rank(N), i.e. Nodes(S) ≥ 2Rank(S)

Nodes(N) = Nodes(S) since Nodes(N) = Nodes(S)

≥ 2Rank(S) IH

= 2Rank(N) since Rank(N) = Rank(S)

So P () holds for all recursive steps.

Therefore P (T ) holds for all up-trees T by structural induction.

For more intuition on the rules, we have included some examples below. There are no new questions on this
page. But you may use the space below if you run out of room on the previous page.

T S

Here, T and S are two up-trees as defined by our basis step. Thus, we have the
following:
Node(T ) = Node(S) = 1
Rank(T ) = Rank(S) = 0

TN1

S

N1 is created by combining T and S with Combine 1. We take the root of T and
make it the root of N1, then append the root of S as a child of T . Thus, we have
the following:
Node(N1) = Node(S) + Node(T ) = 2
Rank(N1) = 1 + Rank(T ) = 1

N1N2

N1 S

N2 is created by combining N1 and S with Combine 2. Rank(S) < Rank(N1), so
we take the root of N1 and make it the root of N2, then append the root of S as
a child of N1. Thus, we have the following:
Node(N2) = Node(S) + Node(N1) = 3
Rank(N2) = Rank(N1) = 1

N2N3

N2N2 N1

N1

N3 is created by combining N1 and N2 with Combine 1. We take the root of N2
and make it the root of N3, then append the root of N1 as a child of N2. Thus,
we have the following:
Node(N3) = Node(N1) + Node(N2) = 5
Rank(N3) = 1 + Rank(N2) = 2

N3N4

N3 N3N3 N3

N4 is created by compressing N3. We take the root of N3 and make all other
nodes in N3 direct children of the root. Thus, we have the following:
Node(N4) = Node(N3) = 5
Rank(N4) = Rank(N3) = 2
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7. Wait, that’s illegal [15 points]

Choose to do exactly one of these two problems.

(a) Let L = {0k1j0k | j, k ∈ N, j 6= k}. Prove that L is not regular.

Solution:

This is essentially the proof that binary palindromes can’t be recognized by any DFA.

Let L = {0k1j0k | j, k ∈ N, j 6= k}. Let D be an arbitrary DFA, and suppose for the sake of contradiction
that D accepts L. Consider S = {0k1 | k ≥ 0, k 6= 1}. Since S contains infinitely many strings and D has
a finite number of states, two strings in S must end up in the same state. These strings are in the form 0i1
and 0j1 for some i, j ≥ 0 where i, j 6= 1, and we have i 6= j since these are two different strings.

Now, we append the string 0i to both of these strings. The two resulting strings are:

a = 0i10i Note that a ∈ L.

b = 0j10i Note that b 6∈ L, since i 6= j.

Since a and b end up in the same state, D must either accept both strings or reject both strings. However,
since a ∈ L and b 6∈ L, it must give the wrong answer for one string, which contradicts that it accepts L.
Thus, our only remaining assumption, that D exists, must be false.

Since D was arbitrary, there is no DFA that recognizes L, so L is not regular.

(b) Let S be the set of all real numbers in [0, 1) such that the even-indexed digits after the decimal point in its
decimal expansion are all 0. Prove that S is uncountably infinite.

For example 1
100 = 0.010000.... has a 0 at indices 0, 2, 3, 4, 5, ... and a 1 at index 1. Since it has 0’s at indices

0, 2, 4, ..., it is in S.

π − 3 = 0.14159... 6∈ S, since the number at index 0 is 1.

Solution:

Suppose S is countable. Then there exists a surjection f : N → S. Then, for each natural number i we
have some decimal sequence that i maps to.
We construct an element x, x starts with 0.(0 before decimal point), and the (2i + 1)th digit after the
decimal point equals to 3 if the (2i+ 1)th digit of f(i) doesn’t equal to 3(or doesn’t have (2i+ 1)th digit),
and equals to 4 otherwise, for all i ∈ N. And the (2i)th digit after decimal point be 0.
For any i ∈ N, by our construction, f(i) differs from x on the (2i+1)th digit. And by our construction the
even-indexed digits after the decimal point of x is always 0, and x ∈ [0, 1), therefore x ∈ S. Since x is not
in the range of f, f is not a surjection, and therefore is not a bijection, thus a contradiction. Therefore S is
uncountable.
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8. Grading Morale [1 point]

Put something on this page. Depending on your mood, this might be a poem, description of favorite NFT1, or a
piece of art. Or you can tell us what you believe Oob’s story may be.

As long as you make some mark on this page, you will get the point.

Solution:

Gumball is proud of you for making it through the quarter! :D

1Please, don’t actually buy NFTs. All the NFT problems this quarter were jokes. Seriously, don’t get NFTs.
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