
CSE 311 : Midterm Exam Solutions

1. Translation

Let your domain of discourse be positive integers.

For this problem, you may use the predicates

• Even(x) which is true if and only if x is even.

• Odd(x) which is true if and only if x is odd.

• PrimePower(x) which is true if and only if x is “a prime power” (which means the prime factorization of x is
pa for a prime number p and an integer a. 125 = 53 is a prime power, 24 = 23 · 3 is not a prime power)

• PowerOfTwo(x), which is true if and only if x is a power of 2 (i.e., x = 2c for some integer c)

• standard math predicates (e.g. =, 6=, <,>,≥, . . .)

(a) Translate the following predicate logic statement into English. Your translation must be natural.

∀x(PrimePower(x) → Odd(x) ∨ PowerOfTwo(x))

Solution:

Every prime power is odd or a power of two.

(b) Translate “There is more than one prime power” into predicate logic. Solution:

∃x∃y(PrimePower(x) ∧ PrimePower(y) ∧ x 6= y.

(c) Find an equivalent statement to the one below by taking the contrapositive of the implication inside. Give
your final answer in English; you do not need to show work.

“For every integer, if it is even then it is a power of two or not a prime power.”

Solution:

“For every integer, if it is not a power of two and a prime power, then it is not even.”

(d) Negate the following predicate logic sentence. In your final answer, negations should only be applied to single
predicates.

∃x∀y([Even(y) ∨ PrimePower(y)] → [Even(x) ∧ Odd(y)])

Solution:

∀x∃y[Even(y) ∨ PrimePower(y)] ∧ [Odd(x) ∨ Even(y)]
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2. Set or Number Theory Proof

For the questions below you may use the definitions of modular equivalence and divides and algebra.

You may not use results from the number theory formula sheet or theorems proven in class (though you may emulate
those proofs!)

Finally, you may also use this fact without proving it:

Fact 1: For any two integers x, y and any prime p: if xy ≡ 0 (mod p) then p|x or p|y.

(a) Disprove this statement with a counterexample.

For every integer n, ab ≡ 0 (mod n) implies a ≡ 0 (mod n) or b ≡ 0 (mod n). (Hint: you will need to choose
n to be a composite number).

Solution:

Take n = 10, a = 5, b = 2. We note 5 · 2 ≡ 0 (mod 10) but a 6≡ 0 (mod 10) and b 6≡ 0 (mod 10).

Remark: There are many other examples. We can take some composite integer n (such as 10) and if we
take a,b s.t. a*b = n then this should serve as a counter-example (there are other families of counter-
examples).

(b) Prove that for every prime p: If ab ≡ 0 (mod p), then a ≡ 311p (mod p) or b ≡ 0 (mod p).

Solution:

Let p be an arbitrary prime and a, b be arbitrary integers such that ab ≡ 0 (mod p). Applying Fact 1 above,
we have

p|a or p|b. Applying the definition of mod twice we have:

a ≡ 0 (mod p) or b ≡ 0 (mod p). We now divide into two cases.

Case 1: a ≡ 0 (mod p). By definition of equivalence, p|a, so pk = a for some integer k. Then pk− 311p =
a−311p. Factoring, p(k−311) = a−311p. Since k is an integer, k−311 is as well, and we have p|(a−311p).
Thus a ≡ 311p (mod p)

Case 2: b ≡ 0 (mod p)

In this case we’re already done! :D

In both cases, we have our desired conclusion. Since a, b, p were arbitrary the implication holds for every
prime p
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3. Induction Proof

Prove that 6|
(
102n + 2

)
for all n ∈ Z+ using induction on n.

Recall that Z+ is the positive integers (i.e., starting at 1).

Don’t forget to define your predicate as part of your proof!

Hint: 198 = 6 · 33. Solution:

Let P (n) be the statement:
6 | 102n + 2

We prove that P (n) is true for all n ∈ Z+ by induction on n.

Base Case: P (1):
102·1 + 2 = 102 + 2 = 102 = 17 · 6
By the definition of division, 6|102, P (1) holds.

Inductive Hypothesis: Suppose that P (k) is true for some arbitrary k ∈ Z+.

Inductive Step: We show P (k + 1):

102·(k+1) + 2 = 102k+2 + 2

= 102k · 100 + 2

= (6j − 2) · 100 + 2 Inductive Hypothesis

= 600j − 198

= (100j − 33) · 6

By the definition of division, 6|102·(k+1) + 2, so this proves P (k + 1).

Conclusion: P (n) holds for all n ∈ Z+ by the principle of induction.
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