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Warm-up: Predicate Logic
Express each of these system specifications using predicates, quantifiers, and logical 
connectives. For some of these problems, more than one translation will be 
reasonable depending on your choice of predicates.

(a) Every user has access to an electronic mailbox

(b) The system mailbox can be accessed by everyone in the group if the file system 
is locked.

(c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic 
state.

(d) At least one router is functioning normally if the throughput is between 
100kbps and 500 kbps and the proxy server is not in diagnostic mode.



Warm-up: Predicate Logic Solutions
(a) Every user has access to an electronic mailbox.

(b) The system mailbox can be accessed by everyone in the group if the file system is locked.

Let the domain be users and mailboxes. Let User(x) be “x is a user”, let Mailbox(y) be “y is a 
mailbox”, and let Access(x, y) be “x has access to y”. 

∀x (User(x) → (∃y (Mailbox(y) ∧ Access(x, y))))
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(a) Every user has access to an electronic mailbox.

(b) The system mailbox can be accessed by everyone in the group if the file system is locked.

Let the domain be users and mailboxes. Let User(x) be “x is a user”, let Mailbox(y) be “y is a 
mailbox”, and let Access(x, y) be “x has access to y”. 

∀x (User(x) → (∃y (Mailbox(y) ∧ Access(x, y))))

Solution 1: Let the domain be people in the group. Let CanAccessSM(x) be “x has access to 
the system mailbox”. Let p be the proposition “the file system is locked.” 

p → ∀x CanAccessSM(x). 

Solution2: Let the domain be people and mailboxes and use Access(x, y) as defined in the 
solution to part (a), and then also add InGroup(x) for “x is in the group”, and let 
SystemMailBox be the name for the system mailbox. 

FileSystemLocked → ∀x (InGroup(x) → Access(x, SystemMailBox)).



Warm-up: Predicate Logic Solutions
(c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic state.

(d) At least one router is functioning normally if the throughput is between 100kbps and 
500 kbps and the proxy server is not in diagnostic mode.

Let the domain be all applications. Let Firewall(x) be “x is the firewall”, and let ProxyServer(x) 
be “x is the proxy server.” Let Diagnostic(x) be “x is in a diagnostic state”. 

∀x ∀y ((Firewall(x) ∧ Diagnostic(x)) → (ProxyServer(y) → Diagnostic(y))
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(c) The firewall is in a diagnostic state only if the proxy server is in a diagnostic state.

(d) At least one router is functioning normally if the throughput is between 100kbps and 
500 kbps and the proxy server is not in diagnostic mode.

Let the domain be all applications. Let Firewall(x) be “x is the firewall”, and let ProxyServer(x) 
be “x is the proxy server.” Let Diagnostic(x) be “x is in a diagnostic state”. 

∀x ∀y ((Firewall(x) ∧ Diagnostic(x)) → (ProxyServer(y) → Diagnostic(y))

Let the domain be all applications and routers. Let Router(x) be “x is a router”, and let 
ProxyServer(x) be “x is the proxy server.” Let Diagnostic(x) be “x is in a diagnostic state”. Let p
be “the throughput is between 100kbps and 500 kbps”. Let Functioning(y) be “y is 
functioning normally”.

p ∧ ∀x (¬ ProxyServer(x) ∨ ¬ Diagnostic(x))) → ∃y (Router(y) ∧ Functioning(y))



Practice Final: 1. Regularly Irregular

Let Σ = {0, 1}. Prove that the language L = {x ∈ Σ∗ : #0(x) < #1(x)} is irregular.



Practice Final: 1. Regularly Irregular Solution
Let Σ = {0, 1}. Prove that the language L = {x ∈ Σ∗ : #0(x) < #1(x)} is irregular.

Suppose, for the sake of contradiction, that L = {x ∈ Σ∗ : #0(x) < #1(x)} is regular. Then there is a 
DFA 𝑀 such that 𝑀 accepts exactly L. 

Let 𝑆 = [TODO]
Because the DFA is finite, there are two (different) strings 𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the 
same state when read by 𝑀. [TODO].

Consider the string 𝑧 = [TODO] .

Since 𝑥, 𝑦 led to the same state and 𝑀 is deterministic, 𝑥𝑧 and 𝑦𝑧 will also lead to the same state 
𝑞 in 𝑀. Observe that 𝑥𝑧 = [TODO] , so 𝑥𝑧 ∈ L but 𝑦𝑧 = [TODO] , so 𝑦𝑧 ∉ L. Since 𝑞 is can be only 
one of an accept or reject state, 𝑀 does not actually recognize L. That’s a contradiction! 

Therefore, L is an irregular language.
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Practice Final: 2. Recurrences, Recurrences

Define

Prove that T(n) ≤ n3 for n ≥ 3



Practice Final: 2. Recurrences, Recurrences Solution
We go by strong induction on n. Let P(n) be “T(n) ≤ n3” for  n ≥ 3.
Base Cases.

Induction Hypothesis.
Induction Step.

Conclusion. 
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Practice Final: 2. Recurrences, Recurrences Solution
We go by strong induction on n. Let P(n) be “T(n) ≤ n3” for  n ≥ 3.
Base Cases. When n = 3:
When n = 4:
When n = 5:
Induction Hypothesis. Suppose P(3) ∧ P(4) ∧ · · · ∧ P(k) for some k ≥ 5.
Induction Step.

Conclusion. Thus, since the base case and induction step hold, the P(n) is true for n ≥ 3. 



Practice Final: 3. All The Machines!

Let Σ = {0, 1, 2}. Consider L = {w ∈ Σ ∗ : Every 1 in the string has at least one 0 
before and after it}. 

(a) Give a regular expression that represents A.

(b) Give a DFA that recognizes A.

(c) Give a CFG that generates A.
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(a) Give a regular expression that represents A.

(c) Give a CFG that generates A.

(0 ∪ 2)∗ (0(0 ∪ 1 ∪ 2)∗0)∗ (0 ∪ 2)∗

S → 0S | 2S | T
T → 0R0T | X
R → 0 | 1 | 2 
X → 0X | 2X | ε



Practice Final: 4. Structural CFGs

Consider the following CFG: S → ε | SS | S1 | S01. Another way of writing the 
recursive definition of this set, Q, is as follows: 

● ε ∈ Q
● If S ∈ Q, then S1 ∈ Q and S01 ∈ Q
● If S, T ∈ Q, then ST ∈ Q. 

Prove, by structural induction that if w ∈ Q, then w has at least as many 1’s 
as 0’s
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Practice Final: BONUS Set Proof

A = {x : x ≡ k (mod 4)}, B = {x : x = 4r+k for some integer r}. Prove A = B for all integer k
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Practice Final: 5. Tralse!
For each of the following answer True or False and give a short explanation of your 
answer. 

(a) Any subset of a regular language is also regular.

(b) The set of programs that loop forever on at least one input is decidable.

(c) If ℝ⊆ A for some set A, then A is uncountable.

(d) If the domain of discourse is people, the logical statement 
∃x (P(x) → ∀y (x ≠ y → ¬P(y)) 
can be correctly translated as “There exists a unique person who has property P”.

(e) ∃x (∀y P(x, y)) → ∀y (∃x P(x, y)) is true regardless of what predicate P is.



Practice Final: 5. Tralse! Solution
(a) Any subset of a regular language is also regular.
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∃x (P(x) → ∀y (x ≠ y → ¬P(y)) 
can be correctly translated as “There exists a unique person who has 
property P”.
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(e) ∃x (∀y P(x, y)) → ∀y (∃x P(x, y)) is true regardless of what predicate P is.



Practice Final: 6. Regularly Irregular

The following is the graph of a binary relation R. 

(a) Draw the transitive-reflexive closure of R.

(b) Let S = {(X, Y ) : X, Y ∈𝒫(ℕ) ∧ X⊆ Y }. 
Recall that R is antisymmetric iff ((a, b) ∈ R ∧ a ≠ b) → (b, a) ∉ R. 
Prove that S is antisymmetric.
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(b) Let S = {(X, Y ) : X, Y ∈𝒫(ℕ) ∧ X⊆ Y }. 
Recall that R is antisymmetric iff ((a, b) ∈ R ∧ a ≠ b) → (b, a) ∉ R. 
Prove that S is antisymmetric.

Practice Final: 6. Regularly Irregular Solution



Practice Final: 8. Modern DFAs

Let Σ = {0, 1, 2}. 

Construct a DFA that recognizes exactly strings with a 0 in all positions i 
where i%3 = 0.
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Let Σ = {0, 1, 2}. Construct a DFA that recognizes exactly strings with a 0 in all positions i where 
i%3 = 0.



That’s All, Folks!

Any questions?


