CSE 311 : Practice Final

This exam is a (slight) modification of a real final given in a prior quarter of CSE311.
The original exam was given in a 110 minute slot.
We strongly recommend you take this exam as though it were closed book - even though your exam will be open book.

Instructions

- Students had 110 minutes to complete the exam.
- The exam was closed resource (except for the logical equivalences, boolean algebra, and inference rules reference sheets). You exam will be open resource.
- The problems are of varying difficulty.
- If you get stuck on a problem, move on and come back to it later.

1. Regularly Irregular [15 points]

Let $\Sigma=\{0,1\}$. Prove that the language $L=\left\{x \in \Sigma^{*}: \#_{0}(x)<\#_{1}(x)\right\}$ is irregular.

2. Recurrences, Recurrences [15 points]

Define

$$
T(n)= \begin{cases}n & \text { if } n=0,1 \\ 4 T\left(\left\lfloor\frac{n}{2}\right\rfloor\right)+n & \text { otherwise }\end{cases}
$$

Prove that $T(n) \leq n^{3}$ for $n \geq 3$.

3. All The Machines! [15 points]

Let $\Sigma=\{0,1,2\}$.
Consider $L=\left\{w \in \Sigma^{*}\right.$: Every 1 in the string has at least one 0 before and after it $\}$.
(a) Give a regular expression that represents A.
(b) Give a DFA that recognizes A.
(c) Give a CFG that generates A.

4. Structural CFGs [15 points]

Consider the following CFG: $\mathbf{S} \rightarrow \varepsilon|\mathbf{S S}| \mathbf{S} 1 \mid \mathbf{S} 01$. Another way of writing the recursive definition of this set, Q, is as follows:

- $\varepsilon \in Q$
- If $S \in Q$, then $S 1 \in Q$ and $S 01 \in Q$
- If $S, T \in Q$, then $S T \in Q$.

Prove, by structural induction that if $w \in Q$, then w has at least as many 1 's as 0 's.

5. Tralse! [15 points]

For each of the following answer True or False and give a short explanation of your answer.
(a) Any subset of a regular language is also regular.
(b) The set of programs that loop forever on at least one input is decidable.
(c) If $\mathbb{R} \subseteq A$ for some set A, then A is uncountable.
(d) If the domain of discourse is people, the logical statement

$$
\exists x(P(x) \rightarrow \forall y(x \neq y \rightarrow \neg P(y))
$$

can be correctly translated as "There exists a unique person who has property P ".
(e) $\exists x(\forall y P(x, y)) \rightarrow \forall y(\exists x P(x, y))$ is true regardless of what predicate P is.

6. Relationships! [15 points]

The following is the graph of a binary relation R.

(a) Draw the transitive-reflexive closure of R. [5 points]

- •
-

\bullet
-
\bullet
(b) Let $S=\{(X, Y): X, Y \in \mathcal{P}(\mathbb{N}) \wedge X \subseteq Y\}$.

Recall that R is antisymmetric iff $((a, b) \in R \wedge a \neq b) \rightarrow(b, a) \notin R$.
Prove that S is antisymmetric. [10 points]

7. Construction Paper! [15 points]

Convert the following NFA into a DFA using the algorithm from lecture.

8. Modern DFAs [15 points]

Let $\Sigma=\{0,1,2\}$. Construct a DFA that recognizes exactly strings with a 0 in all positions i where $i \% 3=0$.

