Section 07: Induction

1. Induction with Inequality

Prove that $6 n+6<2^{n}$ for all $n \geq 6$.

2. Induction with Formulas

These problems are a little more difficult and abstract. Try making sure you can do all the other problems before trying these ones.
(a) (i) Show that given two sets A and B that $\overline{A \cup B}=\bar{A} \cap \bar{B}$. (Don't use induction.)
(ii) Show using induction that for an integer $n \geq 2$, given n sets $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ that

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n-1} \cup A_{n}}=\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n-1}} \cap \overline{A_{n}}
$$

(b) (i) Show that given any integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$. (Don't use induction.)
(ii) Show using induction that for any integer $n \geq 2$, given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, that

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\right)
$$

In other words, if a number divides each term in a sum then that number divides the sum.

3. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: " " is a string
Recursive Step: If X is a string and c is a character then append (c, X) is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\text { len("") } & =0 \\
\text { len }(\operatorname{append}(c, X)) & =1+\operatorname{len}(X)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\text { double("") } & =" " \\
\text { double(append }(c, X)) & =\operatorname{append}(c, \operatorname{append}(c, \text { double }(X))) .
\end{array}
$$

Prove that for any string X, len $(\operatorname{double}(X))=2 \operatorname{len}(X)$.
(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(\bullet, L, R)$ is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\text { leaves }(\bullet) & =1 \\
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\text { leaves }(L)+\text { leaves }(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\operatorname{Tree}(\bullet, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$ for all Trees T.
(c) Prove the previous claim using strong induction. Define $P(n)$ as "all trees T of size n satisfy leaves $(T) \geq$ $\operatorname{size}(T) / 2+1 / 2^{\prime \prime}$. You may use the following facts:

- For any tree T we have $\operatorname{size}(T) \geq 1$.
- For any tree T, $\operatorname{size}(T)=1$ if and only if $T=\bullet$.

If we wanted to prove these claims, we could do so by structural induction.
Note, in the inductive step you should start by letting T be an arbitrary tree of size $k+1$.

