Section 07: Solutions

1. Induction with Inequality

Prove that $6n + 6 < 2^n$ for all $n \ge 6$. Solution:

Let P(n) be " $6n + 6 < 2^n$ ". We will prove P(n) for all integers $n \ge 6$ by induction on n

Base Case (n = 6): $6 \cdot 6 + 6 = 42 < 64 = 2^6$, so P(6) holds.

Inductive Hypothesis: Assume that $6k + 6 < 2^k$ for an arbitrary integer k > 6.

Inductive Step: Goal: Show $6(k+1) + 6 < 2^{k+1}$

$$6(k+1)+6=6k+6+6$$

$$<2^k+6 \qquad \qquad \text{[Inductive Hypothesis]}$$

$$<2^k+2^k \qquad \qquad \text{[Since } 2^k>6\text{, since } k\geq 6\text{]}$$

$$=2\cdot 2^k$$

$$=2^{k+1}$$

So $P(k) \to P(k+1)$ for an arbitrary integer $k \ge 6$.

Conclusion: P(n) holds for all integers $n \ge 6$ by the principle of induction.

2. Induction with Formulas

These problems are a little more difficult and abstract. Try making sure you can do all the other problems before trying these ones.

(a) (i) Show that given two sets A and B that $\overline{A \cup B} = \overline{A} \cap \overline{B}$. (Don't use induction.)

Solution:

Let x be arbitrary. Then,

$$x \in \overline{A \cup B} \equiv \neg (x \in A \cup B)$$
 [Definition of complement]
$$\equiv \neg (x \in A \lor x \in B)$$
 [Definition of union]
$$\equiv \neg (x \in A) \land \neg (x \in B)$$
 [Definition of complement]
$$\equiv x \in \overline{A} \land x \in \overline{B}$$
 [Definition of intersection]

Since x was arbitrary we have that $x \in \overline{A \cup B}$ if and only if $x \in \overline{A} \cap \overline{B}$ for all x. By the definition of set equality we've shown,

$$\overline{A \cup B} = \overline{A} \cap \overline{B}.$$

(ii) Show using induction that for an integer $n \ge 2$, given n sets $A_1, A_2, \ldots, A_{n-1}, A_n$ that

$$\overline{A_1 \cup A_2 \cup \dots \cup A_{n-1} \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap \dots \cap \overline{A_{n-1}} \cap \overline{A_n}$$

Solution:

Let P(n) be "given n sets $A_1, A_2, \ldots, A_{n-1}, A_n$ it holds that $\overline{A_1 \cup A_2 \cup \cdots \cup A_n} = \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_{n-1}} \cap \overline{A_n}$." We show P(n) for all integers $n \geq 2$ by induction on n.

Base Case: P(2) says that for two sets A_1 and A_2 that $\overline{A_1 \cup A_2} = \overline{A_1} \cap \overline{A_2}$, which is exactly part (a) so P(2) holds.

Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer $k \geq 2$.

Inductive Step: Let $A_1, A_2, \ldots, A_k, A_{k+1}$ be sets. Then by part (a) we have,

$$\overline{(A_1 \cup A_2 \cup \dots \cup A_k) \cup A_{k+1}} = \overline{A_1 \cup A_2 \cup \dots \cup A_k} \cap \overline{A_{k+1}}.$$

By the inductive hypothesis we have $\overline{A_1 \cup A_2 \cup \cdots A_k} = \overline{A_1} \cap \overline{A_2} \cap \cdots \cap \overline{A_k}$. Thus,

$$\overline{A_1 \cup A_2 \cup \dots \cup A_k} \cap \overline{A_{k+1}} = (\overline{A_1} \cap \overline{A_2} \cap \dots \overline{A_k}) \cap \overline{A_{k+1}}.$$

We've now shown

$$\overline{A_1 \cup A_2 \cup \cdots \cup A_k \cup A_{k+1}} = \overline{A_1} \cap \overline{A_2} \cap \cdots \overline{A_k} \cap \overline{A_{k+1}}.$$

which is exactly P(k+1).

Conclusion P(n) holds for all integers $n \ge 2$ by the principle of induction.

(b) (i) Show that given any integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid (a+b)$. (Don't use induction.)

Solution:

Let a, b, and c be arbitrary integers and suppose that $c \mid a$ and $c \mid b$. Then by definition there exist integers j and k such that a = jc and b = kc. Then a + b = jc + kc = (j + k)c. Since j + k is an integer, by definition we have $c \mid (a + b)$.

(ii) Show using induction that for any integer $n \ge 2$, given n numbers $a_1, a_2, \ldots, a_{n-1}, a_n$, for any integer c such that $c \mid a_i$ for $i = 1, 2, \ldots, n$, that

$$c \mid (a_1 + a_2 + \cdots + a_{n-1} + a_n).$$

In other words, if a number divides each term in a sum then that number divides the sum.

Solution:

Let P(n) be "given n numbers $a_1, a_2, \ldots, a_{n-1}, a_n$, for any integer c such that $c \mid a_i$ for $i = 1, 2, \ldots, n$, it holds that $c \mid (a_1 + a_2 + \cdots + a_n)$." We show P(n) holds for all integer $n \ge 2$ by induction on n.

Base Case: P(2) says that given two integers a_1 and a_2 , for any integer c such that $c \mid a_1$ and $c \mid a_2$ it holds that $c \mid (a_1 + a_2)$. This is exactly part (a) so P(2) holds.

Inductive Hypothesis: Suppose that P(k) holds for some arbitrary integer $k \geq 2$.

Inductive Step: Let $a_1, a_2, \ldots, a_k, a_{k+1}$ be k+1 integers. Let c be arbitrary and suppose that $c \mid a_i$ for $i=1,2,\ldots,k+1$. Then we can write

$$a_1 + a_2 + \dots + a_k + a_{k+1} = (a_1 + a_2 + \dots + a_k) + a_{k+1}.$$

The sum $a_1 + a_2 + \cdots + a_k$ has k terms and c divides all of them, meaning we can apply the inductive hypothesis. It says that $c \mid (a_1 + a_2 + \cdots + a_k)$. Since $c \mid (a_1 + a_2 + \cdots + a_k)$ and $c \mid a_{k+1}$, by part (a) we have,

$$c \mid (a_1 + a_2 + \cdots + a_k + a_{k+1}).$$

This shows P(k+1).

Conclusion: P(n) holds for all integers $n \ge 2$ by induction the principle of induction.

3. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: "" is a string

Recursive Step: If X is a string and c is a character then append(c, X) is a string.

Recall the following recursive definition of the function len:

$$\begin{split} & \mathsf{len}(\texttt{""}) & = 0 \\ & \mathsf{len}(\mathsf{append}(c,X)) & = 1 + \mathsf{len}(X) \end{split}$$

Now, consider the following recursive definition:

$$\begin{array}{ll} \mathsf{double}("") &= "" \\ \mathsf{double}(\mathsf{append}(c,X)) &= \mathsf{append}(c,\mathsf{append}(c,\mathsf{double}(X))). \end{array}$$

Prove that for any string X, len(double(X)) = 2len(X).

Solution:

For a string X, let P(X) be "len(double(X)) = 2len(X)". We prove P(X) for all strings X by structural induction on X.

Base Case (X = ""**):** By definition, len(double("")) = len("") = $0 = 2 \cdot 0 = 2$ len(""), so P("") holds

Inductive Hypothesis: Suppose P(X) holds for some arbitrary string X.

Inductive Step: Goal: Show that P(append(c, X)) holds for any character c.

$$\begin{split} & \mathsf{len}(\mathsf{double}(\mathsf{append}(c,X))) = \mathsf{len}(\mathsf{append}(c,\mathsf{append}(c,\mathsf{double}(X)))) & [\mathsf{By} \ \mathsf{Definition} \ \mathsf{of} \ \mathsf{double}] \\ &= 1 + \mathsf{len}(\mathsf{append}(c,\mathsf{double}(X))) & [\mathsf{By} \ \mathsf{Definition} \ \mathsf{of} \ \mathsf{len}] \\ &= 1 + 1 + \mathsf{len}(\mathsf{double}(X)) & [\mathsf{By} \ \mathsf{Definition} \ \mathsf{of} \ \mathsf{len}] \\ &= 2 + 2\mathsf{len}(X) & [\mathsf{By} \ \mathsf{IH}] \\ &= 2(1 + \mathsf{len}(X)) & [\mathsf{Algebra}] \\ &= 2(\mathsf{len}(\mathsf{append}(c,X))) & [\mathsf{By} \ \mathsf{Definition} \ \mathsf{of} \ \mathsf{len}] \end{split}$$

This proves P(append(c, X)).

Conclusion: P(X) holds for all strings X by structural induction.

(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a **Tree**.

Recursive Step: If L is a Tree and R is a Tree then $Tree(\bullet, L, R)$ is a Tree.

The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$\begin{array}{ll} \mathsf{leaves}(\bullet) & = 1 \\ \mathsf{leaves}(\mathsf{Tree}(\bullet, L, R)) & = \mathsf{leaves}(L) + \mathsf{leaves}(R) \end{array}$$

Also, recall the definition of size on trees:

$$size(\bullet)$$
 = 1
 $size(Tree(\bullet, L, R))$ = 1 + $size(L)$ + $size(R)$

Prove that leaves $(T) \ge \operatorname{size}(T)/2 + 1/2$ for all Trees T.

Solution:

For a tree T, let P(T) be leaves $(T) \ge \operatorname{size}(T)/2 + 1/2$. We prove P(T) for all trees T by structural induction on T.

Base Case (T = •): By definition of leaves(•), leaves(•) = 1 and size(•) = 1. So, leaves(•) = $1 \ge 1/2 + 1/2 = size(•)/2 + 1/2$, so P(•) holds.

Inductive Hypothesis: Suppose P(L) and P(R) hold for some arbitrary trees L, R.

Inductive Step: Goal: Show that $P(Tree(\bullet, L, R))$ holds.

$$\begin{split} \mathsf{leaves}(\mathsf{Tree}(\bullet,L,R)) &= \mathsf{leaves}(L) + \mathsf{leaves}(R) & [\mathsf{By Definition of leaves}] \\ &\geq (\mathsf{size}(L)/2 + 1/2) + (\mathsf{size}(R)/2 + 1/2) & [\mathsf{By IH}] \\ &= (1/2 + \mathsf{size}(L)/2 + \mathsf{size}(R)/2) + 1/2 & [\mathsf{By Algebra}] \\ &= \frac{1 + \mathsf{size}(L) + \mathsf{size}(R)}{2} + 1/2 & [\mathsf{By Algebra}] \\ &= \mathsf{size}(T)/2 + 1/2 & [\mathsf{By Definition of size}] \end{split}$$

This proves $P(Tree(\bullet, L, R))$.

Conclusion: Thus, P(T) holds for all trees T by structural induction.

- (c) Prove the previous claim using strong induction. Define P(n) as "all trees T of size n satisfy leaves $T \geq \text{size}(T)/2 + 1/2$ ". You may use the following facts:
 - For any tree T we have $size(T) \ge 1$.
 - For any tree T, size(T) = 1 if and only if $T = \bullet$.

If we wanted to prove these claims, we could do so by structural induction.

Note, in the inductive step you should start by letting T be an arbitrary tree of size k+1.

Solution:

Let P(n) be "all trees T of size n satisfy leaves $(T) \ge \text{size}(T)/2 + 1/2$ ". We show P(n) for all integers $n \ge 1$ by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1. The only tree with size 1 is \bullet , so $T = \bullet$. By definition, leaves $(T) = \text{leaves}(\bullet) = 1$ and thus size(T) = 1 = 1/2 + 1/2 = size(T)/2 + 1/2. This shows the base case holds.

Inductive Hypothesis: Suppose that P(j) holds for all integers $j=1,2,\ldots,k$ for some arbitrary integer k > 1.

Inductive Step: Let T be an arbitrary tree of size k+1. Since k+1>1, we must have $T\neq \bullet$. It follows from the definition of a tree that $T=\mathsf{Tree}(\bullet,L,R)$ for some trees L and R. By definition, we have $\mathsf{size}(T)=1+\mathsf{size}(L)+\mathsf{size}(R)$. Since sizes are non-negative, this equation shows $\mathsf{size}(T)>\mathsf{size}(L)$ and $\mathsf{size}(T)>\mathsf{size}(R)$ meaning we can apply the inductive hypothesis. This says that $\mathsf{leaves}(L)\geq \mathsf{size}(L)/2+1/2$ and $\mathsf{leaves}(R)\geq \mathsf{size}(R)/2+1/2$.

We have,

$$\begin{split} & \mathsf{leaves}(T) = \mathsf{leaves}(\mathsf{Tree}(\bullet, L, R)) \\ &= \mathsf{leaves}(L) + \mathsf{leaves}(R) & \mathsf{[By Definition of leaves]} \\ &\geq (\mathsf{size}(L)/2 + 1/2) + (\mathsf{size}(R)/2 + 1/2) & \mathsf{[By IH]} \\ &= (1/2 + \mathsf{size}(L)/2 + \mathsf{size}(R)/2) + 1/2 & \mathsf{[By Algebra]} \\ &= \frac{1 + \mathsf{size}(L) + \mathsf{size}(R)}{2} + 1/2 & \mathsf{[By Algebra]} \\ &= \mathsf{size}(T)/2 + 1/2 & \mathsf{[By Definition of size]} \end{split}$$

This shows P(k+1).

Conclusion: P(n) holds for all integers $n \ge 1$ by the principle of strong induction.

Note, this proves the claim for all trees because every tree T has some size $s \ge 1$. Then P(s) says that all trees of size s satisfy the claim, including T.