Section 07: Solutions

1. Induction with Inequality

Prove that $6 n+6<2^{n}$ for all $n \geq 6$. Solution:
Let $P(n)$ be " $6 n+6<2^{n}$ ". We will prove $P(n)$ for all integers $n \geq 6$ by induction on n
Base Case $(n=6): 6 \cdot 6+6=42<64=2^{6}$, so $P(6)$ holds.
Inductive Hypothesis: Assume that $6 k+6<2^{k}$ for an arbitrary integer $k \geq 6$.
Inductive Step: Goal: Show $6(k+1)+6<2^{k+1}$

$$
\begin{aligned}
6(k+1)+6 & =6 k+6+6 & & \\
& <2^{k}+6 & & \text { [Inductive Hypothesis] } \\
& <2^{k}+2^{k} & & {\left[\text { Since } 2^{k}>6, \text { since } k \geq 6\right] } \\
& =2 \cdot 2^{k} & & \\
& =2^{k+1} & &
\end{aligned}
$$

So $P(k) \rightarrow P(k+1)$ for an arbitrary integer $k \geq 6$.
Conclusion: $P(n)$ holds for all integers $n \geq 6$ by the principle of induction.

2. Induction with Formulas

These problems are a little more difficult and abstract. Try making sure you can do all the other problems before trying these ones.
(a) (i) Show that given two sets A and B that $\overline{A \cup B}=\bar{A} \cap \bar{B}$. (Don't use induction.)

Solution:

Let x be arbitrary. Then,

$$
\begin{aligned}
x \in \overline{A \cup B} & \equiv \neg(x \in A \cup B) & & \text { [Definition of complement] } \\
& \equiv \neg(x \in A \vee x \in B) & & \text { [Definition of union] } \\
& \equiv \neg(x \in A) \wedge \neg(x \in B) & & \text { [De Morgan's Laws] } \\
& \equiv x \in \bar{A} \wedge x \in \bar{B} & & \text { [Definition of complement] } \\
& \equiv x \in(\bar{A} \cap \bar{B}) & & \text { [Definition of intersection] }
\end{aligned}
$$

Since x was arbitrary we have that $x \in \overline{A \cup B}$ if and only if $x \in \bar{A} \cap \bar{B}$ for all x. By the definition of set equality we've shown,

$$
\overline{A \cup B}=\bar{A} \cap \bar{B}
$$

(ii) Show using induction that for an integer $n \geq 2$, given n sets $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ that

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n-1} \cup A_{n}}=\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{n-1}} \cap \overline{A_{n}}
$$

Solution:

Let $P(n)$ be "given n sets $A_{1}, A_{2}, \ldots, A_{n-1}, A_{n}$ it holds that $\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{n}}=\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap$ $\overline{A_{n-1}} \cap \overline{A_{n}}$." We show $P(n)$ for all integers $n \geq 2$ by induction on n.
Base Case: $P(2)$ says that for two sets A_{1} and A_{2} that $\overline{A_{1} \cup A_{2}}=\overline{A_{1}} \cap \overline{A_{2}}$, which is exactly part (a) so $P(2)$ holds.
Inductive Hypothesis: Suppose that $P(k)$ holds for some arbitrary integer $k \geq 2$.
Inductive Step: Let $A_{1}, A_{2}, \ldots, A_{k}, A_{k+1}$ be sets. Then by part (a) we have,

$$
\overline{\left(A_{1} \cup A_{2} \cup \cdots \cup A_{k}\right) \cup A_{k+1}}=\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{k}} \cap \overline{A_{k+1}} .
$$

By the inductive hypothesis we have $\overline{A_{1} \cup A_{2} \cup \cdots A_{k}}=\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \cap \overline{A_{k}}$. Thus,

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{k}} \cap \overline{A_{k+1}}=\left(\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \overline{A_{k}}\right) \cap \overline{A_{k+1}}
$$

We've now shown

$$
\overline{A_{1} \cup A_{2} \cup \cdots \cup A_{k} \cup A_{k+1}}=\overline{A_{1}} \cap \overline{A_{2}} \cap \cdots \overline{A_{k}} \cap \overline{A_{k+1}}
$$

which is exactly $P(k+1)$.
Conclusion $P(n)$ holds for all integers $n \geq 2$ by the principle of induction.
(b) (i) Show that given any integers a, b, and c, if $c \mid a$ and $c \mid b$, then $c \mid(a+b)$. (Don't use induction.)

Solution:

Let a, b, and c be arbitrary integers and suppose that $c \mid a$ and $c \mid b$. Then by definition there exist integers j and k such that $a=j c$ and $b=k c$. Then $a+b=j c+k c=(j+k) c$. Since $j+k$ is an integer, by definition we have $c \mid(a+b)$.
(ii) Show using induction that for any integer $n \geq 2$, given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, that

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{n-1}+a_{n}\right)
$$

In other words, if a number divides each term in a sum then that number divides the sum.

Solution:

Let $P(n)$ be "given n numbers $a_{1}, a_{2}, \ldots, a_{n-1}, a_{n}$, for any integer c such that $c \mid a_{i}$ for $i=1,2, \ldots, n$, it holds that $c \mid\left(a_{1}+a_{2}+\cdots+a_{n}\right)$." We show $P(n)$ holds for all integer $n \geq 2$ by induction on n.
Base Case: $P(2)$ says that given two integers a_{1} and a_{2}, for any integer c such that $c \mid a_{1}$ and $c \mid a_{2}$ it holds that $c \mid\left(a_{1}+a_{2}\right)$. This is exactly part (a) so $P(2)$ holds.
Inductive Hypothesis: Suppose that $P(k)$ holds for some arbitrary integer $k \geq 2$.
Inductive Step: Let $a_{1}, a_{2}, \ldots, a_{k}, a_{k+1}$ be $k+1$ integers. Let c be arbitrary and suppose that $c \mid a_{i}$ for $i=1,2, \ldots, k+1$. Then we can write

$$
a_{1}+a_{2}+\cdots+a_{k}+a_{k+1}=\left(a_{1}+a_{2}+\cdots+a_{k}\right)+a_{k+1}
$$

The sum $a_{1}+a_{2}+\cdots+a_{k}$ has k terms and c divides all of them, meaning we can apply the inductive hypothesis. It says that $c \mid\left(a_{1}+a_{2}+\cdots+a_{k}\right)$. Since $c \mid\left(a_{1}+a_{2}+\cdots+a_{k}\right)$ and $c \mid a_{k+1}$, by part (a) we have,

$$
c \mid\left(a_{1}+a_{2}+\cdots+a_{k}+a_{k+1}\right)
$$

This shows $P(k+1)$.
Conclusion: $P(n)$ holds for all integers $n \geq 2$ by induction the principle of induction.

3. Structural Induction

(a) Consider the following recursive definition of strings.

Basis Step: " " is a string
Recursive Step: If X is a string and c is a character then append (c, X) is a string.
Recall the following recursive definition of the function len:

$$
\begin{array}{ll}
\text { len("") } & =0 \\
\text { len }(\text { append }(c, X)) & =1+\operatorname{len}(X)
\end{array}
$$

Now, consider the following recursive definition:

$$
\begin{array}{ll}
\text { double("") } & =" " \\
\text { double(append }(c, X)) & =\operatorname{append}(c, \operatorname{append}(c, \text { double }(X))) .
\end{array}
$$

Prove that for any string X, len $($ double $(X))=2 \operatorname{len}(X)$.
Solution:
For a string X, let $\mathrm{P}(X)$ be "len $($ double $(X))=2$ len (X) ". We prove $\mathrm{P}(X)$ for all strings X by structural induction on X.

Base Case ($X=$ " "): By definition, len(double(" ")) $=\operatorname{len}("$ " $)=0=2 \cdot 0=2 \operatorname{len}("$ "), so P(" ") holds
Inductive Hypothesis: Suppose $\mathrm{P}(X)$ holds for some arbitrary string X.
Inductive Step: Goal: Show that $\mathrm{P}(\operatorname{append}(c, X))$ holds for any character c.

$$
\begin{aligned}
\operatorname{len}(\operatorname{double}(\operatorname{append}(c, X))) & =\operatorname{len}(\operatorname{append}(c, \operatorname{append}(c, \text { double }(X)))) & & \text { [By Definition of double] } \\
& =1+\operatorname{len}(\operatorname{append}(c, \operatorname{double}(X))) & & \text { [By Definition of len] } \\
& =1+1+\operatorname{len}(\operatorname{double}(X)) & & \text { [By Definition of len] } \\
& =2+2 \operatorname{len}(X) & & \text { [By IH] } \\
& =2(1+\operatorname{len}(X)) & & \text { [Algebra] } \\
& =2(\operatorname{len}(\operatorname{append}(c, X))) & & \text { [By Definition of len] }
\end{aligned}
$$

This proves $\mathrm{P}($ append $(c, X))$.
Conclusion: $\mathrm{P}(X)$ holds for all strings X by structural induction.
(b) Consider the following definition of a (binary) Tree:

Basis Step: • is a Tree.
Recursive Step: If L is a Tree and R is a Tree then $\operatorname{Tree}(\bullet, L, R)$ is a Tree.
The function leaves returns the number of leaves of a Tree. It is defined as follows:

$$
\begin{array}{ll}
\text { leaves }(\bullet) & =1 \\
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\text { leaves }(L)+\operatorname{leaves}(R)
\end{array}
$$

Also, recall the definition of size on trees:

$$
\begin{array}{ll}
\operatorname{size}(\bullet) & =1 \\
\operatorname{size}(\operatorname{Tree}(\bullet, L, R)) & =1+\operatorname{size}(L)+\operatorname{size}(R)
\end{array}
$$

Prove that leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$ for all Trees T.

Solution:

For a tree T, let $\mathrm{P}(T)$ be leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$. We prove $\mathrm{P}(T)$ for all trees T by structural induction on T.

Base Case $(\mathbf{T}=\bullet)$: By definition of leaves (\bullet), leaves $(\bullet)=1$ and $\operatorname{size}(\bullet)=1$. So, leaves $(\bullet)=1 \geq$ $1 / 2+1 / 2=\operatorname{size}(\bullet) / 2+1 / 2$, so $\mathrm{P}(\bullet)$ holds.
Inductive Hypothesis: Suppose $\mathrm{P}(L)$ and $\mathrm{P}(R)$ hold for some arbitrary trees L, R.
Inductive Step: Goal: Show that $\mathrm{P}(\operatorname{Tree}(\bullet, L, R))$ holds.

$$
\begin{aligned}
\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & =\operatorname{leaves}(L)+\text { leaves }(R) & & \text { [By Definition of leaves] } \\
& \geq(\operatorname{size}(L) / 2+1 / 2)+(\operatorname{size}(R) / 2+1 / 2) & & \text { [By IH] } \\
& =(1 / 2+\operatorname{size}(L) / 2+\operatorname{size}(R) / 2)+1 / 2 & & \text { [By Algebra] } \\
& =\frac{1+\operatorname{size}(L)+\operatorname{size}(R)}{2}+1 / 2 & & \text { [By Algebra] } \\
& =\operatorname{size}(T) / 2+1 / 2 & & \text { [By Definition of size] }
\end{aligned}
$$

This proves $\mathrm{P}(\operatorname{Tree}(\bullet, L, R))$.
Conclusion: Thus, $\mathrm{P}(T)$ holds for all trees T by structural induction.
(c) Prove the previous claim using strong induction. Define $P(n)$ as "all trees T of size n satisfy leaves $(T) \geq$ $\operatorname{size}(T) / 2+1 / 2$ ". You may use the following facts:

- For any tree T we have $\operatorname{size}(T) \geq 1$.
- For any tree $T, \operatorname{size}(T)=1$ if and only if $T=\bullet$.

If we wanted to prove these claims, we could do so by structural induction.
Note, in the inductive step you should start by letting T be an arbitrary tree of size $k+1$.

Solution:

Let $P(n)$ be "all trees T of size n satisfy leaves $(T) \geq \operatorname{size}(T) / 2+1 / 2$ ". We show $P(n)$ for all integers $n \geq 1$ by strong induction on n.

Base Case: Let T be an arbitrary tree of size 1 . The only tree with size 1 is \bullet, so $T=\bullet$. By definition, leaves $(T)=$ leaves $(\bullet)=1$ and thus $\operatorname{size}(T)=1=1 / 2+1 / 2=\operatorname{size}(T) / 2+1 / 2$. This shows the base case holds.

Inductive Hypothesis: Suppose that $P(j)$ holds for all integers $j=1,2, \ldots, k$ for some arbitrary integer $k \geq 1$.

Inductive Step: Let T be an arbitrary tree of size $k+1$. Since $k+1>1$, we must have $T \neq \bullet$. It follows from the definition of a tree that $T=\operatorname{Tree}(\bullet, L, R)$ for some trees L and R. By definition, we have $\operatorname{size}(T)=1+\operatorname{size}(L)+\operatorname{size}(R)$. Since sizes are non-negative, this equation shows size $(T)>\operatorname{size}(L)$ and $\operatorname{size}(T)>\operatorname{size}(R)$ meaning we can apply the inductive hypothesis. This says that leaves $(L) \geq$ $\operatorname{size}(L) / 2+1 / 2$ and leaves $(R) \geq \operatorname{size}(R) / 2+1 / 2$.

We have,

$$
\begin{aligned}
\text { leaves }(T) & =\text { leaves }(\operatorname{Tree}(\bullet, L, R)) & & \\
& =\text { leaves }(L)+\text { leaves }(R) & & {[\text { By Definition of leaves] }} \\
& \geq(\operatorname{size}(L) / 2+1 / 2)+(\operatorname{size}(R) / 2+1 / 2) & & {[\text { By IH] }} \\
& =(1 / 2+\operatorname{size}(L) / 2+\operatorname{size}(R) / 2)+1 / 2 & & {[\text { By Algebra] }} \\
& =\frac{1+\operatorname{size}(L)+\operatorname{size}(R)}{2}+1 / 2 & & \text { [By Algebra] } \\
& =\operatorname{size}(T) / 2+1 / 2 & & {[\text { By Definition of size] }}
\end{aligned}
$$

This shows $P(k+1)$.
Conclusion: $P(n)$ holds for all integers $n \geq 1$ by the principle of strong induction.
Note, this proves the claim for all trees because every tree T has some size $s \geq 1$. Then $P(s)$ says that all trees of size s satisfy the claim, including T.

