Section 06: Induction, Midterm Review

1. A Horse of a Different Color

Did you know that all dogs are named Dubs? It's true. Maybe. Let's prove it by induction. The key is talking about groups of dogs, where every dog has the same name.
Let $P(i)$ mean "all groups of i dogs have the same name." We prove $\forall n P(n)$ by induction on n.
Base Case: $P(1)$ Take an arbitrary group of one dog, all dogs in that group all have the same name (there's only the one, so it has the same name as itself).

Inductive Hypothesis: Suppose $P(k)$ holds for some arbitrary k.
Inductive Step: Consider an arbitrary group of $k+1$ dogs. Arbitrarily select a dog, D, and remove it from the group. What remains is a group of k dogs. By inductive hypothesis, all k of those dogs have the same name. Add D back to the group, and remove some other $\operatorname{dog} D^{\prime}$. We have a (different) group of k dogs, so the inductive hypothesis applies again, and every dog in that group also shares the same name. All $k+1$ dogs appeared in at least one of the two groups, and our groups overlapped, so all of our $k+1$ dogs have the same name, as required.
Conclusion: We conclude $P(n)$ holds for all n by the principle of induction.
Recalling that Dubs is a dog, we have that every dog must have the same name as him, so every dog is named Dubs.

This proof cannot be correct (the proposed claim is false). Where is the bug?

2. Induction with Divides

Prove that $9 \mid\left(n^{3}+(n+1)^{3}+(n+2)^{3}\right)$ for all $n>1$ by induction.

3. Cantelli's Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is described by the function f :

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=1 \\
& f(n)=2 f(n-1)-f(n-2) \text { for } n \geq 2
\end{aligned}
$$

Determine, with proof, the number, $f(n)$, of rabbits that Cantelli owns in year n. That is, construct a formula for $f(n)$ and prove its correctness.

4. Midterm Review: Translation

Let your domain of discourse be all coffee drinks. You should use the following predicates:

- $\operatorname{soy}(x)$ is true iff x contains soy milk.
- whole (x) is true iff x contains whole milk.
- sugar (x) is true iff x contains sugar
- decaf (x) is true iff x is not caffeinated.
- vegan (x) is true iff x is vegan.
- RobbieLikes (x) is true iff Robbie likes the drink x.

Translate each of the following statements into predicate logic. You may use quantifiers, the predicates above, and usual math connectors like $=$ and \neq.
(a) Coffee drinks with whole milk are not vegan.
(b) Robbie only likes one coffee drink, and that drink is not vegan.
(c) There is a drink that has both sugar and soy milk.

Translate the following symbolic logic statement into a (natural) English sentence. Take advantage of domain restriction.

$$
\forall x([\operatorname{decaf}(x) \wedge \operatorname{RobbieLikes}(x)] \rightarrow \operatorname{sugar}(x))
$$

5. Midterm Review: Set Theory

Suppose that $A \subseteq B$. Prove that $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.

6. Midterm Review: Number Theory

Let p be a prime number at least 3 , and let x be an integer such that $x^{2} \% p=1$.
(a) Show that if an integer y satisfies $y \equiv 1(\bmod p)$, then $y^{2} \equiv 1(\bmod p)$. (this proof will be short!) (Try to do this without using the theorem "Raising Congruences To A Power")
(b) Repeat part (a), but don't use any theorems from the Number Theory Reference Sheet. That is, show the claim directly from the definitions.
(c) From part (a), we can see that $x \% p$ can equal 1 . Show that for any integer x, if $x^{2} \equiv 1(\bmod p)$, then $x \equiv 1$ $(\bmod p)$ or $x \equiv-1(\bmod p)$. That is, show that the only value $x \% p$ can take other than 1 is $p-1$.
Hint: Suppose you have an x such that $x^{2} \equiv 1(\bmod p)$ and use the fact that $x^{2}-1=(x-1)(x+1)$
Hint: You may the following theorem without proof: if p is prime and $p \mid(a b)$ then $p \mid a$ or $p \mid b$.

7. Midterm Review: Induction

For any $n \in \mathbb{N}$, define S_{n} to be the sum of the squares of the first n positive integers, or

$$
S_{n}=1^{2}+2^{2}+\cdots+n^{2}
$$

Prove that for all $n \in \mathbb{N}, S_{n}=\frac{1}{6} n(n+1)(2 n+1)$.

8. Midterm Review: Strong Induction

Robbie is planning to buy snacks for the members of his competitive roller-skating troupe. However, his local grocery store sells snacks in packs of 5 and packs of 7 .

Prove that Robbie can buy exactly n snacks for all integers $n \geq 24$

