
Section 6

CSE 311 - Sp 2022



Administrivia 



Announcements and Reminders
● HW5 due yesterday (BOTH PARTS) 10PM on Gradescope

○ Final late due date is Saturday 5/7 @ 10pm
○ We will do our best to release grades for part 2 immediately after the late due date Saturday night!

● HW4 grades out now
○ Regrade requests are open for one week
○ If you think your work may have been graded incorrectly, please submit a regrade request!

● HW6 is will be released on Monday!
○ You have slightly longer than a regular homework, it’s due Wednesday 5/18 @ 10pm

● Midterm is This Weekend! (Friday 5/6 - Sunday 5/8)
○ “Take home” exam on Gradescope
○ You will have 2 hours to complete it, starting from when you open it on Gradescope
○ It is designed to take ~30 minutes



References
● How to LaTeX

○ https://courses.cs.washington.edu/courses/cse311/22sp/assignments/HowToLaTeX.pdf

● Logical Equivalences
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/reference-logical_equiv.pdf

● Inference Rules
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/InferenceRules.pdf

● Set Definitions
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/reference-sets.pdf

● Modular Arithmetic Definitions and Properties
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/reference-number-theory.pdf

● Induction Templates
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/induction-templates.pdf



Strong Induction



Problem 3 - Cantelli’s Rabbits

Xavier Cantelli owns some rabbits. The number of rabbits he has in any given year is 
described by the function f: 

f(0) = 0 
f(1) = 1
f(n) = 2f(n − 1) − f(n − 2) for n ≥ 2

Determine, with proof, the number, f(n), of rabbits that Cantelli owns in year n. That 
is, construct a formula for f(n) and prove its correctness.
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Xavier Cantelli owns some 
rabbits. The number of rabbits 
he has in any given year is 
described by the function f: 

f(0) = 0 
f(1) = 1
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It seems like we have a 
pattern here!

f(n) = n

But we don’t want to check 
for EVERY n, so let’s see if we 
can prove it instead!



Strong Induction Template (also on course website!)

Let P(n) be “(whatever you’re trying to prove)”
We show P(n) holds for all n ≥ bmin by strong induction on n.

Base Cases: Show P(bmin), P(bmin+1), … , P(bmax) are all true

Inductive Hypothesis: Suppose P(bmin) P(bmin+1) … P(k) holds for an 
arbitrary k ≥ bmax

Inductive Step: Show P(k + 1) (i.e. get [P(bmin) P(k)] → P(k + 1)) 

Conclusion: Therefore, P(n) holds for all n ≥ bmin by the principle of strong 
induction.



Let P(n) be “” for all n.
We show P(n) holds for all n by strong induction on n.

Base Cases:

Inductive Hypothesis:

Inductive Step:

Conclusion:
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Inductive Step:
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Let P(n) be “f(n) = n” for all n ≥ 0.
We show P(n) holds for all n ≥ 0 by strong induction on n.

Base Cases: (n = 0, n = 1): f(0) = 0 and f(1) = 1 by definition of f.

Inductive Hypothesis:

Inductive Step:

Conclusion:
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Let P(n) be “f(n) = n” for all n ≥ 0.
We show P(n) holds for all n ≥ 0 by strong induction on n.
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Midterm Review



Problem 4 - Translation
Let your domain of discourse be all coffee drinks. You should use the following predicates: 

• soy(x) is true iff x contains soy milk. • whole(x) is true iff x contains whole milk. 
• sugar(x) is true iff x contains sugar • decaf(x) is true iff x is not caffeinated. 
• vegan(x) is true iff x is vegan. • RobbieLikes(x) is true iff Robbie likes the drink x. 

Translate each of the following statements into predicate logic. You may use quantifiers, the 
predicates above, and usual math connectors like = and ≠. 

(a) Coffee drinks with whole milk are not vegan. 
(b) Robbie only likes one coffee drink, and that drink is not vegan. 
(c) There is a drink that has both sugar and soy milk. 

Translate the following symbolic logic statement into a (natural) English sentence. Take 
advantage of domain restriction. 

x([decaf(x) RobbieLikes(x)] → sugar(x)) 
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(a) Coffee drinks with whole milk are not vegan. 

x(whole(x) → ¬ vegan(x))

(b) Robbie only likes one coffee drink, and that drink is not vegan.

x y(RobbieLikes(x) ¬ Vegan(x) [RobbieLikes(y) → x = y]) 
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x(sugar(x) soy(x))



Problem 4 - Translation
Let your domain of discourse be all coffee drinks. 
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Problem 4 - Translation
Let your domain of discourse be all coffee drinks. 

Translate into English: 

x([decaf(x) RobbieLikes(x)] → sugar(x))

“Every decaf drink that Robbie likes has sugar.”
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Problem 6 - Number Theory

Let p be a prime number at least 3 

(a) Show that if an integer y satisfies y ≡ 1 (mod p), then y2 ≡ 1 (mod p). (this proof will be 
short!)

(b) Repeat part (a), but don’t use any theorems from the Number Theory Reference Sheet. 
That is, show the claim directly from the definitions. 

(c) From part (a), we can see that x%p can equal 1. Show that for any integer x, if 
x2 ≡ 1 (mod p), then x ≡ 1 (mod p) or x ≡ −1 (mod p). That is, show that the only value x%p 
can take other than 1 is p − 1. Hint: Suppose you have an x such that x2 ≡ 1 (mod p) and 
use the fact that x2 − 1 = (x − 1)(x + 1) Hint: You may the following theorem without proof: if 
p is prime and p | (ab) then p | a or p | b.
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Let y be an arbitrary integer and suppose y ≡ 1 (mod p). 
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Since y is arbitrary, the claim holds.
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Problem 6 - Number Theory
Let p be a prime number at least 3

(b) Show that if an integer y satisfies y ≡ 1 (mod p), then y2 ≡ 1 (mod p)

Suppose y ≡ 1 (mod p). By the definition of mod, p | (y − 1). 

Therefore, by the definition of divides, there exists an integer k such that pk = (y − 1)

By multiplying both sides of pk = (y - 1) by (y + 1), we get
pk(y + 1)    = (y − 1)(y + 1)
p(k(y + 1)) = (y − 1)(y + 1)

Since (y − 1)(y + 1) = y2 − 1, we have 
p(k(y + 1)) = y2 − 1

k and y are integers, so (k(y + 1)) is also an integer. By definition of divides
p | y2 − 1. Therefore, by definition of mod, y2 ≡ 1 (mod p).
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Problem 6 - Number Theory
Let p be a prime number at least 3

(c) Show that for any integer x, if x2 ≡ 1 (mod p), then x ≡ 1 (mod p) or x ≡ −1 (mod p). That is, show that the 
only value x%p can take other than 1 is p − 1.

Suppose x2 ≡ 1 (mod p). By the definition of mod, p | x2 − 1



Problem 6 - Number Theory
Let p be a prime number at least 3

(c) Show that for any integer x, if x2 ≡ 1 (mod p), then x ≡ 1 (mod p) or x ≡ −1 (mod p). That is, show that the 
only value x%p can take other than 1 is p − 1.

Suppose x2 ≡ 1 (mod p). By the definition of mod, p | x2 − 1

Since (x − 1)(x + 1) = x2 − 1, we have 
p | (x − 1)(x + 1)



Problem 6 - Number Theory
Let p be a prime number at least 3

(c) Show that for any integer x, if x2 ≡ 1 (mod p), then x ≡ 1 (mod p) or x ≡ −1 (mod p). That is, show that the 
only value x%p can take other than 1 is p − 1.

Suppose x2 ≡ 1 (mod p). By the definition of mod, p | x2 − 1

Since (x − 1)(x + 1) = x2 − 1, we have 
p | (x − 1)(x + 1)

If p is a prime number and p | (ab), then p | a or p | b so either
p | (x − 1)  or  p | (x + 1)



Problem 6 - Number Theory
Let p be a prime number at least 3

(c) Show that for any integer x, if x2 ≡ 1 (mod p), then x ≡ 1 (mod p) or x ≡ −1 (mod p). That is, show that the 
only value x%p can take other than 1 is p − 1.

Suppose x2 ≡ 1 (mod p). By the definition of mod, p | x2 − 1

Since (x − 1)(x + 1) = x2 − 1, we have 
p | (x − 1)(x + 1)

If p is a prime number and p | (ab), then p | a or p | b so either
p | (x − 1)  or  p | (x + 1)

By the definition of mod, we have x ≡ 1 (mod p) or x ≡ −1 (mod p).



Problem 7 - Induction
For any n , define Sn to be the sum of the squares of the first n positive integers, or 

Sn = 12 + 22 + · · · + n2

Prove that for all n , Sn = (⅙) n(n + 1)(2n + 1).
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or 12 + 22 + · · · + n2 = (⅙) n(n + 1)(2n + 1)

Let P(n) be the statement “” defined for all n. 
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Robbie is planning to buy snacks for the members of his competitive roller-skating 
troupe. However, his local grocery store sells snacks in packs of 5 and packs of 7. 

Prove that Robbie can buy exactly n snacks for all integers n ≥ 24
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Problem 8 - Strong Induction



That’s All, Folks!
Any questions?


