Section 05: Number Theory

1. GCD

- (a) Calculate gcd(100, 50).
- (b) Calculate gcd(17, 31).
- (c) Find the multiplicative inverse of 6 (mod 7).
- (d) Does 49 have an multiplicative inverse (mod 7)?

2. Extended Euclidean Algorithm

- (a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that $7y \equiv 1 \pmod{33}$. You should use the extended Euclidean Algorithm. Your answer should be in the range $0 \le y < 33$.
- (b) Now, solve $7z \equiv 2 \pmod{33}$ for all of its integer solutions z.

3. Euclid's Lemma¹

- (a) Show that if an integer p divides the product of two integers a and b, and gcd(p, a) = 1, then p divides b.
- (b) Show that if a prime p divides ab where a and b are integers, then $p \mid a$ or $p \mid b$. (Hint: Use part (a))

4. Prime Checking

You wrote the following code, is Prime(int n) which you are confident returns true if and only if n is prime (we assume its input is always positive).

```
public boolean isPrime(int n) {
   int potentialDiv = 2;
   while (potentialDiv < n) {
      if (n % potenttialDiv == 0)
          return false;</pre>
```

¹these proofs aren't much longer than proofs you've seen so far, but it can be a little easier to get stuck – use these as a chance to practice how to get unstuck if you do!

```
potentialDiv++;
}
return true;
}
```

Your friend suggests replacing potentialDiv < n with potentialDiv <= Math.sqrt(n). In this problem, you'll argue the change is ok. That is, your method still produces the correct result if n is a positive integer.

We will use "nontrivial divisor" to mean a factor that isn't 1 or the number itself. Formally, a positive integer k being a "nontrivial divisor" of n means that k|n, $k \neq 1$ and $k \neq n$. Claim: when a positive integer n has a nontrivial divisor, it has a nontrivial divisor at most \sqrt{n} .

- (a) Let's try to break down the claim and understand it through examples. Show an example (a specific n and k) of a nontrivial divisor, of a divisor that is not nontrivial, and of a number with only trivial divisors.
- (b) Prove the claim. Hint: you may want to divide into two cases!
- (c) Informally explain why the fact about integers proved in (b) lets you change the code safely.

5. Modular Arithmetic

- (a) Prove that if $a \mid b$ and $b \mid a$, where a and b are integers, then a = b or a = -b.
- (b) Prove that if $n \mid m$, where n and m are integers greater than 1, and if $a \equiv b \pmod{m}$, where a and b are integers, then $a \equiv b \pmod{n}$.

6. Induction with Equality

- (a) Show using induction that $0+1+2+\cdots+n=\frac{n(n+1)}{2}$ for all $n\in\mathbb{N}$.
- (b) Define the triangle numbers as $\triangle_n = 1 + 2 + \dots + n$, where $n \in \mathbb{N}$. In part (a) we showed $\triangle_n = \frac{n(n+1)}{2}$. Prove the following equality for all $n \in \mathbb{N}$:

$$0^3 + 1^3 + \dots + n^3 = \triangle_n^2$$