
Section 5

CSE 311 - Sp 2022



Administrivia 



Announcements and Reminders
● HW4 due yesterday 10PM on Gradescope

○ Final late due date is Saturday 4/30 @ 10pm

● HW3 grades out now
○ Regrade requests are open for one week
○ If you think your work may have been graded incorrectly, please submit a regrade request!

● HW5 is out!
○ 2 parts! 
○ BOTH PARTS Due Wednesday 5/4 @ 10pm

● Midterm is Next Weekend! (Friday 5/6 - Sunday 5/8)
○ “Take home” exam on Gradescope
○ You will have 2 hours to complete it, starting from when you open it on Gradescope
○ It is designed to take ~30 minutes



References
● How to LaTeX

○ https://courses.cs.washington.edu/courses/cse311/22sp/assignments/HowToLaTeX.pdf

● Logical Equivalences
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/reference-logical_equiv.pdf

● Inference Rules
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/InferenceRules.pdf

● Set Definitions
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/reference-sets.pdf

● Modular Arithmetic Definitions and Properties
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/reference-number-theory.pdf

● Induction Templates
○ https://courses.cs.washington.edu/courses/cse311/22sp/resources/induction-templates.pdf



Warm-Up



Problem 1 - GCD

(a) Calculate gcd(100, 50).

(b) Calculate gcd(17, 31)

(c) Find the multiplicative inverse of 6 (mod 7).

(d) Does 49 have an multiplicative inverse (mod 7)?
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(a) Calculate gcd(100, 50).

50

(b) Calculate gcd(17, 31)

1

(c) Find the multiplicative inverse of 6 (mod 7).

6

(d) Does 49 have an multiplicative inverse (mod 7)?

It does not. Intuitively, this is because 49x for any x is going to be 0 mod 7, which means it 
can never be 1.

Problem 1 - GCD



Extended Euclidian 
Algorithm



gcd(660,126)  

while(n != 0) {
int rem = m % n;
m=n;
n=rem;

}

Euclid’s Algorithm



Euclid’s Algorithm

gcd(660,126)  = gcd(126, 660 mod 126)   = gcd(126, 30)
= gcd(30, 126 mod 30) = gcd(30, 6)
= gcd(6, 30 mod 6) = gcd(6, 0)
= 6

Starting Numbers

Final
answer

while(n != 0) {
int rem = m % n;
m=n;
n=rem;

}



Bézout’s Theorem

Bézout’s Theorem



Extended Euclidian Algorithm
●Step 1 compute gcd(a,b); keep tableau information.

●Step 2 solve all equations for the remainder.

●Step 3 substitute backward

gcd(35,27)



Extended Euclidian Algorithm
●Step 1 compute gcd(a,b); keep tableau information.

●Step 2 solve all equations for the remainder.

●Step 3 substitute backward

gcd(35,27)  = gcd(27, 35%27) = gcd(27,8)
= gcd(8, 27%8)     = gcd(8, 3)
= gcd(3, 8%3)       = gcd(3, 2)
= gcd(2, 3%2)       = gcd(2,1)
= gcd(1, 2%1)       = gcd(1,0)
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Extended Euclidian Algorithm
●Step 1 compute gcd(a,b); keep tableau information.

●Step 2 solve all equations for the remainder.

●Step 3 substitute backward



(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 
7y ≡ 1 (mod 33). You should use the extended Euclidean Algorithm. 
Your answer should be in the range 0 ≤ y < 33.

(b) Now, solve 7z ≡ 2(mod 33) for all of its integer solutions z. 

Problem 2 - Extended Euclidean Algorithm

Work on part (a) with the people around you, and then we’ll go over it together!
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First, we find the gcd: 
gcd(33, 7) = gcd(7, 5) 33 = 4 • 7 + 5

= gcd(5, 2) 7 = 1 • 5 + 2
= gcd(2, 1) 5 = 2 • 2 + 1
= gcd(1, 0) 2 = 2 • 1 + 0 = 1
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= gcd(2, 1) 5 = 2 • 2 + 1
= gcd(1, 0) 2 = 2 • 1 + 0 = 1

Next, we rearrange equations (1) - (3) by 
solving for the remainder: 

1 = 5 − 2 • 2
2 = 7 − 1 • 5 
5 = 33 − 4 • 7
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Now, we backward substitute into the boxed numbers using the equations: 
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= 5 − 2 • (7 − 1 • 5) 
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= 3 • (33 − 4 • 7) − 7 • 2 
= 3 • 33 + -14 • 7
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First, we find the gcd: 
gcd(33, 7) = gcd(7, 5) 33 = 4 • 7 + 5

= gcd(5, 2) 7 = 1 • 5 + 2
= gcd(2, 1) 5 = 2 • 2 + 1
= gcd(1, 0) 2 = 2 • 1 + 0 = 1

Next, we rearrange equations (1) - (3) by 
solving for the remainder: 

1 = 5 − 2 • 2
2 = 7 − 1 • 5 
5 = 33 − 4 • 7

Now, we backward substitute into the boxed numbers using the equations: 
1 = 5 − 2 • 2 

= 5 − 2 • (7 − 1 • 5) 
= 3 • 5 − 2 • 7 
= 3 • (33 − 4 • 7) − 7 • 2 
= 3 • 33 + -14 • 7

So, 1 = 3 • 33 - 14 • −7. 
Thus, 33 − 14 = 19 is the 
multiplicative inverse of 
7 mod 33

(a) Find the multiplicative inverse y of 7 mod 33. That is, find y such that 7y ≡ 1 (mod 33). You 
should use the extended Euclidean Algorithm. Your answer should be in the range 0 ≤ y < 33.
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(b) Now, solve 7z ≡ 2(mod 33) for all of its integer solutions z. 

Problem 2 - Extended Euclidean Algorithm



(b) Now, solve 7z ≡ 2(mod 33) for all of its integer solutions z. 

If 7y ≡ 1(mod 33), then 2 · 7y ≡ 2(mod 33). 

So, z ≡ 2 × 19(mod 33) ≡ 5(mod 33). This means that the set of 
solutions is {5 + 33k | k Z}

Problem 2 - Extended Euclidean Algorithm



Induction



Induction Template

Let P(n) be “(whatever you’re trying to prove)”. 
We show P(n) holds for all n by induction on n.

Base Case: Show P(b) is true

Inductive Hypothesis: Suppose P(k) holds for an arbitrary k ≥ b

Inductive Step: Show P(k + 1) (i.e. get P(k) → P(k + 1)) 

Conclusion: Therefore, P(n) holds for all n by the principle of induction.



Induction Template

Let P(n) be “(whatever you’re trying to prove)”. 
We show P(n) holds for all n by induction on n.

Base Case: Show P(b) is true

Inductive Hypothesis: Suppose P(k) holds for an arbitrary k ≥ b

Inductive Step: Show P(k + 1) (i.e. get P(k) → P(k + 1)) 

Conclusion: Therefore, P(n) holds for all n by the principle of induction.

Note: often you will condition n here, 
like “all natural numbers n” or “n ≥ 0”

Match the earlier condition on n in 
your conclusion!



Show using induction that
0 + 1 + 2 + · · · + n = n(n+1)/2 for all n ∈ℕ

We’re going to fill in the template to construct our proof by induction. Yay fun!

Problem 6 - Induction with Equality



Let P(n) be “” for all n
We show P(n) holds for all n by induction on n.

Problem 6 - Induction with Equality

We need to plug in the thing we 
want to prove as our P(n) and 
constrain n appropriately

Show using induction that
0 + 1 + 2 + · · · + n = n(n+1)/2 for all n ∈ℕ
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Let P(n) be “0 + 1 + 2 + · · · + n = n(n+1)/2” for all n ℕ

We show P(n) holds for all n ℕ by induction on n.

Base Case:

Problem 6 - Induction with Equality

Show that the statement we want 
to prove is true for our base case.

Show using induction that
0 + 1 + 2 + · · · + n = n(n+1)/2 for all n ∈ℕ



Let P(n) be “0 + 1 + 2 + · · · + n = n(n+1)/2” for all n ℕ

We show P(n) holds for all n ℕ by induction on n.

Base Case: P(0): Left side: 0, Right side: 0(0+1)/2 = 0, the two are equal so the base case holds.

Problem 6 - Induction with Equality

CAUTION!!! It is easy to accidentally use backwards reasoning in induction 
proofs, so we try to be very explicit to show ourselves and our readers that we 
are only proving forwards!

One good way to help avoid backwards reasoning in our base case is to simplify 
the left side, simplify the right side, and show they are equal to each other.

Show using induction that
0 + 1 + 2 + · · · + n = n(n+1)/2 for all n ∈ℕ



Let P(n) be “0 + 1 + 2 + · · · + n = n(n+1)/2” for all n ℕ

We show P(n) holds for all n ℕ by induction on n.

Base Case: P(0): Left side: 0, Right side: 0(0+1)/2 = 0, the two are equal so the base case holds.

Inductive Hypothesis:

Problem 6 - Induction with Equality

This step is pretty much always the same!

Show using induction that
0 + 1 + 2 + · · · + n = n(n+1)/2 for all n ∈ℕ
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Let P(n) be “0 + 1 + 2 + · · · + n = n(n+1)/2” for all n ℕ

We show P(n) holds for all n ℕ by induction on n.

Base Case: P(0): Left side: 0, Right side: 0(0+1)/2 = 0, the two are equal so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for some arbitrary integer k ≥ 0.

Inductive Step:

Problem 6 - Induction with Equality

NOW we get to the real meat of the proof.

Show using induction that
0 + 1 + 2 + · · · + n = n(n+1)/2 for all n ∈ℕ



Let P(n) be “0 + 1 + 2 + · · · + n = n(n+1)/2” for all n ℕ

We show P(n) holds for all n ℕ by induction on n.

Base Case: P(0): Left side: 0, Right side: 0(0+1)/2 = 0, the two are equal so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for some arbitrary integer k ≥ 0.

Inductive Step: Goal: Show P(k + 1): 0 + 1 + · · · + (k + 1) = (k + 1)(k + 2)/2 

Problem 6 - Induction with Equality

It can be really helpful to 
list the goal for this step, 
to remind yourself where  
you need to go!

Now, we start with the algebraic manipulation! To avoid backwards reasoning 
here, remember to start with the left side, and keep going until you reach the 
right. If it all goes well, you’ll use the IH somewhere, and that’s induction!

Show using induction that
0 + 1 + 2 + · · · + n = n(n+1)/2 for all n ∈ℕ
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Let P(n) be “0 + 1 + 2 + · · · + n = n(n+1)/2” for all n ℕ

We show P(n) holds for all n ℕ by induction on n.

Base Case: P(0): Left side: 0, Right side: 0(0+1)/2 = 0, the two are equal so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for some arbitrary integer k ≥ 0.

Inductive Step: Goal: Show P(k + 1): 0 + 1 + · · · + (k + 1) = (k + 1)(k + 2)/2 
0 + 1 + · · · + k + (k + 1) = (0 + 1 + · · · + k) + (k + 1)

= k(k + 1)/2 + (k + 1) by I.H.

Problem 6 - Induction with Equality

This step is KEY! We’re able to substitute that whole messy part with the … for a 
closed expression BECAUSE we use our inductive hypothesis. 

Make sure you ALWAYS point out when you use that I.H., so you keep things clear for 
your reader and yourself!
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Let P(n) be “0 + 1 + 2 + · · · + n = n(n+1)/2” for all n ℕ

We show P(n) holds for all n ℕ by induction on n.

Base Case: P(0): Left side: 0, Right side: 0(0+1)/2 = 0, the two are equal so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for some arbitrary integer k ≥ 0.
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= k(k + 1)/2 + (k + 1) by I.H.
= k(k + 1)/2 + 2(k + 1)/2
= (k(k + 1) + 2(k + 1))/2
= (k + 1)(k + 2)/2 factoring out (k+1)

We have shown P(k+1)!

Conclusion:

Problem 6 - Induction with Equality Show using induction that
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Let P(n) be “0 + 1 + 2 + · · · + n = n(n+1)/2” for all n ℕ

We show P(n) holds for all n ℕ by induction on n.

Base Case: P(0): Left side: 0, Right side: 0(0+1)/2 = 0, the two are equal so the base case holds.

Inductive Hypothesis: Suppose P(k) holds for some arbitrary integer k ≥ 0.

Inductive Step: Goal: Show P(k + 1): 0 + 1 + · · · + (k + 1) = (k + 1)(k + 2)/2 
0 + 1 + · · · + k + (k + 1) = (0 + 1 + · · · + k) + (k + 1)

= k(k + 1)/2 + (k + 1) by I.H.
= k(k + 1)/2 + 2(k + 1)/2
= (k(k + 1) + 2(k + 1))/2
= (k + 1)(k + 2)/2 factoring out (k+1)

We have shown P(k+1)!

Conclusion: Therefore, P(n) holds for all n ℕ by the principle of induction.

Problem 6 - Induction with Equality Show using induction that
0 + 1 + 2 + · · · + n = n(n+1)/2 for all n ∈ℕ



That’s All, Folks!
Any questions?


