
Section 03: Solutions

1. Domain Restriction

Translate each of the following sentences into logical notation. These translations require some of our quantifier
tricks. You may use the operators + and · which take two numbers as input and evaluate to their sum or product,
respectively. Remember:

• To restrict the domain under a ∀ quantifier, add a hypothesis to an implication.

• To restrict the domain under an ∃ quantifier, AND in the restriction.

• If you want variables to be different, you have to explicitly require them to be not equal.

(a) Domain: Positive integers; Predicates: Even, Prime, Equal
“There is only one positive integer that is prime and even.” Solution:

∃x(Prime(x) ∧ Even(x) ∧ ∀y[¬ Equal(x, y) → ¬(Even(y) ∧ Prime(y))])

(b) Domain: Real numbers; Predicates: Even, Prime, Equal
“There are two different prime numbers that sum to an even number.” Solution:

∃x∃y(Prime(x) ∧ Prime(y) ∧ ¬Equal(x, y) ∧ Even(x+ y))

(c) Domain: Real numbers; Predicates: Even, Prime, Equal
“The product of two distinct prime numbers is not prime.” Solution:

∀x∀y([Prime(x) ∧ Prime(y) ∧ ¬ Equal(x, y)] → ¬ Prime(xy))

(d) Domain: Real numbers; Predicates: Even, Prime, Equal, Postivite, Greater, Integer
“For every positive integer, there is a greater even integer” Solution:

∀x(Positive(x) ∧ Integer(x) → [∃y(Integer(y) ∧ Even(y) ∧ Greater(y, x))])
Or equivalently: ∀x∃y(Positive(x) ∧ Integer(x) → (Integer(y) ∧ Even(y) ∧ Greater(y, x)))

2. ctrl-z

Translate these logical expressions to English. For each of the translations, assume that domain restriction is being
used and take that into account in your English versions.

Let your domain be all UW Students. Predicates 143Student(x) and 311Student(x) mean the student is in CSE
143 and 311, respectively. BioMajor(x) means x is a bio major, DidHomeworkOne(x) means the student did hom-
work 1 (of 311). Finally KnowsJava(x) and KnowsDeMorgan(x) mean x knows Java and knows DeMorgan’s Laws,
respectively.

(a) ∀x(143Student(x) → KnowsJava(x)) Solution:

Every 143 student knows java.

”If a UW student is a 143 student, then they know java” is a valid translation of the original sentence, but

1

it is not taking advantage of the domain restriction.

(b) ∃x(143Student(x) ∧ BioMajor(x)) Solution:

“There is a 143 student who is a bio major”

“There is a UW student who is a 143 student and is a bio major” is a valid translation of the original
sentence, but is not taking advantage of the domain restriction.

(c) ∀x([311Student(x) ∧ DidHomeworkOne(x)] → KnowsDeMorgan(x)) Solution:

If a 311 student does homework one then they know DeMorgan’s Laws.

3. Predicate Logic Formal Proof

Given ∀x. T (x) → M(x), we wish to prove (∃x. T (x)) → (∃y.M(y)). The following formal proof does this, but it is
missing citations for which rules are used, and which lines they are based on. Fill in the blanks with inference rules
or predicate logic equivalences, as well as the line numbers.

Then, summarize in English what is going on here.

1. ∀x. T (x) → M(x) ()
2.1. ∃x. T (x) ()

Let r be the object that satisfies T (r)
2.2. T (r) (, from)
2.3. T (r) → M(r) (, from)
2.4. M(r) (, from)
2.5. ∃y.M(y) (, from)

2. (∃x. T (x)) → (∃y.M(y)) (, from)

Solution:

1. ∀x. T (x) → M(x) (Given)
2.1. ∃x. T (x) (Assumption)

Let r be the object that satisfies T (r)
2.2. T (r) (∃ elimination, from 2.1)
2.3. T (r) → M(r) (∀ elimination, from 1)
2.4. M(r) (Modus Ponens, from 2.2 and 2.3)
2.5. ∃y.M(y) (∃ introduction, from 2.4)

2. (∃x. T (x)) → (∃y.M(y)) (Direct Proof Rule, from 2.1-2.5)

Following the premise of the implication, we suppose there is an object that satisfies T (·). Then it must satisfy
M(·) also, by the given, which gives us the conclusion of the implication.

4. Quantifier Switch

Consider the following pairs of sentences. For each pair, determine if one implies the other, if they are equivalent,
or neither.

(a) ∀x ∀y P (x, y) ∀y ∀x P (x, y) Solution:

2

These sentences are the same; switching universal quantifiers makes no difference.

(b) ∃x ∃y P (x, y) ∃y ∃x P (x, y) Solution:

These sentences are the same; switching existential quantifiers makes no difference.

(c) ∀x ∃y P (x, y) ∀y ∃x P (x, y) Solution:

These are only the same if P is symmetric (i.e., the order of the arguments doesn’t matter). If the order
of the arguments does matter, then these are different statements. For instance, if P (x, y) is “x < y”, then
the first statement says “for every x, there is a corresponding y such that x < y”, whereas the second says
“for every y, there is a corresponding x such that x < y”. In other words, in the first statement y is a
function of x, and in the second x is a function of y.

If your domain of discourse is “positive integers”, for example, the first is true and the second is false; but
for “negative integers” the second is true while the first is false.

(d) ∀x ∃y P (x, y) ∃x ∀y P (x, y) Solution:

These two statements are usually different.

(e) ∀x ∃y P (x, y) ∃y ∀x P (x, y) Solution:

The second statement is “stronger” than the first (that is, the second implies the first). For the first, y is
allowed to depend on x. For the second, one specific y must work for all x. Thus if the second is true,
whatever value of y makes it true, can also be plugged in for y in the first statement for every x. On the
other hand, if the first statement is true, it might be that different y’s work for the different x’s and no
single value of y exists to make the latter true.

As an example, let you domain of discourse be positive real numbers, and let P (x, y) be xy = 1. The first
statement is true (always take y to be 1/x, which is another positive real number). The second statement
is not true; it asks for a single number that always makes the product 1.

5. Formal Proof (Direct Proof Rule)

Show that ¬t → s follows from t ∨ q, q → r and r → s. Solution:

1. t ∨ q [Given]

2. q → r [Given]

3. r → s [Given]

4.1. ¬t [Assumption]

4.2. q [Elim of ∨: 1, 4.1]
4.3. r [MP of 4.2, 2]

4.4. s [MP 4.3, 3]

4. ¬t → s [Direct Proof Rule]

3

6. Find the Bug

Each of these inference proofs is incorrect. Identify the line (or lines) which incorrectly apply a law, and explain
the error. Then, if the claim is false, give concrete examples of propositions to show it is false. If it is true, write a
correct proof.

(a) This proof claims to show that given a → (b ∨ c), we can conclude a → c.

1. a → (b ∨ c) [Given]
2.1. a [Assumption]
2.2. ¬ b [Assumption]
2.3. b ∨ c [Modus Ponens, from 1 and 2.1]
2.4. c [∨ elimination, from 2.2 and 2.3]

2. a → c [Direct Proof Rule, from 2.1-2.4]

Solution:

The error here is in lines 2.2 and 2. When beginning a subproof for the direct proof rule, only one assump-
tion may be introduced. If the author of this proof wanted to assume both a and ¬ b, they should have
used the assumption a ∧ ¬ b, which would make line 3 be (a ∧ ¬ b) → c instead.

And the claim is false in general. Consider:
a: “I am outside”
b: “I am walking my dog”
c: “I am swimming”
If we assert “If I am outside, I am walking my dog or swimming,” we cannot reasonably conclude that “If
I am outside, I am swimming” (a → c).

(b) This proof claims to show that given p → q and r, we can conclude p → (q ∨ r).

1.p → q [Given]

2.r [Given]

3.p → (q ∨ r) [Intro ∨ (1,2)]

Solution:

Bug is in step 3, we’re applying the rule to only a subexpression.

The statement is true though. A correct proof introduces p as an assumption, uses MP to get q, introduces
∨ to get q ∨ r, and the direct proof rule to complete the argument.

(c) This proof claims to show that given p → q and q that we can conclude p

1.p → q [Given]

2.q [Given]

3.¬p ∨ q [Law of Implication (1)]

4.p [Eliminate ∨ (2,3)

Solution:

The bug is in step 4. Eliminate ∨ from 3 would let us conclude ¬p if we had ¬q or q if we had p. It doesn’t
tell us anything with knowing q.

Indeed, the claim is false. We could have p: “it is raining”
q: “I have my umbrella”

4

And be a person who always carries their umbella with them (even on sunny days). The information is
not sufficient to conclude p.

7. Domain Restriction Negated

When we negate a sentence with a domain restriction, the restriction itself remains intact (i.e. not negated) after
we have fully simplified. That should make sense; if I claim something is true for every even number, I won’t be
convinced by you showing me an odd number. In this problem, you’ll do the algebra to see why.

(a) Consider the statement ¬∃x∃y(Domain1(x)∧Domain2(y)∧ [P (x, y)∧Q(x, y)]). We know that we should end up
with ∀x∀y(Domain1(x) ∧ Domain2(y) → [¬P (x, y) ∨ ¬Q(x, y)]) (that is flip the quantifiers, rewrite the domain
restriction, and negate the other requirements).

But it can help to see the full algebra written out – write out a step-by-step simplification to get the simplified
form (you don’t have to label with rules). Solution:

¬∃x∃y(Domain1(x) ∧ Domain2(y) ∧ [P (x, y) ∧Q(x, y)]) ≡ ∀x¬[∃y(Domain1(x) ∧ Domain2(y) ∧ [P (x, y) ∧Q(x, y)])]

≡ ∀x∀y¬[(Domain1(x) ∧ Domain2(y) ∧ [P (x, y) ∧Q(x, y)])]

≡ ∀x∀y(¬ Domain1(x) ∨ ¬ Domain2(y) ∨ ¬[P (x, y) ∧Q(x, y)])

≡ ∀x∀y(¬ Domain1(x) ∨ ¬ Domain2(y) ∨ [¬P (x, y) ∨ ¬Q(x, y)])

≡ ∀x∀y([¬ Domain1(x) ∨ ¬ Domain2(y)] ∨ [¬P (x, y) ∨ ¬Q(x, y)])

≡ ∀x∀y(¬[Domain1(x) ∧ Domain2(y)] ∨ [¬P (x, y) ∨ ¬Q(x, y)])

≡ ∀x∀y([Domain1(x) ∧ Domain2(y)] → [¬P (x, y) ∨ ¬Q(x, y)])

(b) Now do the same process for: ¬∀x∀y([Domain1(x)∧ Domain2(y)] → [P (x, y)∧Q(x, y)]) Solution:

¬∀x∀y([Domain1(x) ∧ Domain2(y)] → [P (x, y) ∧Q(x, y)]) ≡ ∃x¬[∀y([Domain1(x) ∧ Domain2(y)] → [P (x, y) ∧Q(x, y)])]

≡ ∃x∃y¬[([Domain1(x) ∧ Domain2(y)] → [P (x, y) ∧Q(x, y)])]

≡ ∃x∃y¬[(¬[Domain1(x) ∧ Domain2(y)] ∨ [P (x, y) ∧Q(x, y)])]

≡ ∃x∃y(¬¬[Domain1(x) ∧ Domain2(y)] ∧ ¬[P (x, y) ∧Q(x, y)])

≡ ∃x∃y(Domain1(x) ∧ Domain2(y) ∧ ¬[P (x, y) ∧Q(x, y)])

≡ ∃x∃y(Domain1(x) ∧ Domain2(y) ∧ [¬P (x, y) ∨ ¬Q(x, y)])

8. Quantifier Ordering

Let your domain of discourse be a set of Element objects given in a list called Domain. Imagine you have a predi-
cate pred(x, y), which is encoded in the java method public boolean pred(int x, int y). That is you call your
predicate pred true if and only if the java method returns true.

(a) Consider the following Java method:

public boolean Mystery(Domain D){

for(Element x : D) {

for(Element y : D) {

if(pred(x,y))

return true;

}

}

5

}

Mystery corresponds to a quantified formula (for D being the domain of discourse), what is that formula?
Solution:

∃x∃y(pred(x, y)). If any combination of x and y causes pred to evaluate to true, we return true; that is we
just want x, y to exist.

(b) What formula does mystery2 correspond to

public boolean Mystery2(Domain D){

for(Element x : D) {

boolean thisXPass = false;

for(Element y : D) {

if(pred(x,y))

thisXPass = true;

}

if(!thisXPass)

return false;

}

return true;

}

Solution:

∀x∃y(pred(x, y)).

For a given x, when we come across a y that makes pred(x, y) true, we set the given x to pass (so one y
suffices for a given x) but we require every x to pass, so x is universally quantified. Since y is allowed to
depend on x, we have x as the outermost variable.

9. Formal Proof

Show that ¬p follows from ¬(¬r ∨ t), ¬q ∨ ¬s and (p → q) ∧ (r → s). Solution:

1. ¬(¬r ∨ t) [Given]

2. ¬q ∨ ¬s [Given]

3. (p → q) ∧ (r → s) [Given]

4. ¬¬r ∧ ¬t [DeMorgan’s Law: 1]

5. ¬¬r [Elim of ∧: 4]
6. r [Double Negation: 5]

7. r → s [Elim of ∧: 3]
8. s [MP, 6,7]

9. ¬¬s [Double Negation: 8]

10. ¬s ∨ ¬q [Commutative: 2]

11. ¬q [Elim of ∨: 10, 9]
12. p → q [Elim of ∧: 3]
13. ¬q → ¬p [Contrapositive: 12]

14. ¬p [MP: 11,13]

6

10. A Formal Proof in Predicate Logic

Prove ∃x (P (x) ∨R(x)) from ∀x (P (x) ∨Q(x)) and ∀y (¬Q(y) ∨R(y)). Solution:

1. ∀x (P (x) ∨Q(x)) [Given]

2. ∀y (¬Q(y) ∨R(y)) [Given]

3. P (a) ∨Q(a) [Elim ∀: 1]
4. ¬Q(a) ∨R(a) [Elim ∀: 2]
5. Q(a) → R(a) [Law of Implication: 4]

6. ¬¬P (a) ∨Q(a) [Double Negation: 3]

7. ¬P (a) → Q(a) [Law of Implication: 5]

8.1. ¬P (a) [Assumption]

8.2. Q(a) [Modus Ponens: 8.1, 7]

8.3. R(a) [Modus Ponens: 8.2, 5]

8. ¬P (a) → R(a) [Direct Proof]

9. ¬¬P (a) ∨R(a) [Law of Implication: 8]

10. P (a) ∨R(a) [Double Negation: 9]

11. ∃x (P (x) ∨R(x)) [Intro ∃: 10]

7

	1 Domain Restriction
	2 ctrl-z
	3 Predicate Logic Formal Proof
	4 Quantifier Switch
	5 Formal Proof (Direct Proof Rule)
	6 Find the Bug
	7 Domain Restriction Negated
	8 Quantifier Ordering
	9 Formal Proof
	10 A Formal Proof in Predicate Logic

