
Halting Problem CSE 311 Spring 2022

Lecture 29



Announcements

Remember the final is on Monday starting at 12:30!

Do not come to the exam if:
you’re required to isolate (according to the university’s flow chart)

you think it would be wise to isolate, even if not officially required.

In both cases, send email to Robbie as soon as you know and we’ll
schedule a conflict exam for you.

If you got an email from me, you’re in the small room (CSE2 G04).

If not, you’re in Kane 120. 
In Kane: we’ll ask those not wearing masks to sit toward the front, and those with 
lower comfort levels/desiring to wear masks to sit toward the back.

Sitting every other seat.



Irregularity: one more example



Full outline

1. Suppose for the sake of contradiction that 𝐿 is regular. Then there is some 
DFA 𝑀 that recognizes 𝐿.

2. Let 𝑆 be [fill in with an infinite set of prefixes]. 

3. Because the DFA is finite and 𝑆 is infinite, there are two (different) strings 
𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same state when read by 𝑀 [you don’t 
get to control 𝑥, 𝑦 other than having them not equal and in 𝑆]

4. Consider the string 𝑧 [argue exactly one of xz, yz will be in L] 

5. Since 𝑥, 𝑦 both end up in the same state, and we appended the same 𝑧, 
both 𝑥𝑧 and 𝑦𝑧 end up in the same state of 𝑀. Since 𝑥𝑧 ∈ 𝐿and 𝑦𝑧 ∉ 𝐿, 𝑀
does not recognize 𝐿. But that’s a contradiction!

6. So 𝐿 must be an irregular language.



Practical Tips

When you’re choosing the set 𝑆, think about what the DFA would “have 
to count”

That is fundamentally why a language is irregular. The set 𝑆 is the way 
we prove it! Whatever we “need to remember” it’s different for every 
element of 𝑆.

If your strings have an “obvious middle” (like between the 0’s and 1’s) 
that’s a good place to start.



Let’s Try another

The set of strings with balanced parentheses is not regular.

What do you want 𝑆 to be? What would you have to count?

The number of unclosed parentheses. 

Let 𝑆 =…



Let’s Try another

The set of strings with balanced parentheses is not regular.

What do you want 𝑆 to be? What would you have to count?

The number of unclosed parentheses. 

Want 𝑆 to be a set with infinitely many strings with different numbers of 
unclosed parentheses.

Let 𝑆 = (*



Outline for (∗

1. Suppose for the sake of contradiction that 𝐿 is regular. Then there is some 
DFA 𝑀 that recognizes 𝐿.

2. Let 𝑆 be (*

3. Because the DFA is finite and 𝑆 is infinite, there are two (different) strings 
𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same state when read by 𝑀 Observe that 
𝑥 = (𝑎 for some integer 𝑎, 𝑦 = (b for some integer 𝑏 with 𝑎 ≠ 𝑏.

4. Consider the string 𝑧 [argue exactly one of xz, yz will be in L] 

5. Since 𝑥, 𝑦 both end up in the same state, and we appended the same 𝑧, 
both 𝑥𝑧 and 𝑦𝑧 end up in the same state of 𝑀. Since 𝑥𝑧 ∈ 𝐿and 𝑦𝑧 ∉ 𝐿, 𝑀
does not recognize 𝐿. But that’s a contradiction!

6. So 𝐿 must be an irregular language.



Full outline

1. Suppose for the sake of contradiction that 𝐿 is regular. Then there is some 
DFA 𝑀 that recognizes 𝐿.

2. Let 𝑆 be (*

3. Because the DFA is finite and 𝑆 is infinite, there are two (different) strings 
𝑥, 𝑦 in 𝑆 such that 𝑥 and 𝑦 go to the same state when read by 𝑀 Observe that 
𝑥 = (𝑎 for some integer 𝑎, 𝑦 = (b for some integer 𝑏 with 𝑎 ≠ 𝑏.

4. Consider the string 𝑧=)𝑎 𝑥𝑧 is a balanced set of parentheses (since there 
are the same number of each and all the open-parentheses come before the 
close parentheses). But 𝑦𝑧 is not balanced because 𝑎 ≠ 𝑏. 

5. Since 𝑥, 𝑦 both end up in the same state, and we appended the same 𝑧, 
both 𝑥𝑧 and 𝑦𝑧 end up in the same state of 𝑀. Since 𝑥𝑧 ∈ 𝐿and 𝑦𝑧 ∉ 𝐿, 𝑀
does not recognize 𝐿. But that’s a contradiction!

6. So 𝐿 must be an irregular language.



One more, just the key steps

What about {𝑎𝑘𝑏𝑘𝑐𝑘: 𝑘 ≥ 0}?



One more, just the key steps

What about {𝑎𝑘𝑏𝑘𝑐𝑘: 𝑘 ≥ 0}?

𝑆 = {𝑎𝑘: 𝑘 ≥ 0} or 𝑆 = {𝑎𝑘𝑏𝑘: 𝑘 ≥ 0} are equally good choices.

Your suffix is 𝑏𝑗𝑐𝑗 for the first and 𝑐𝑗 for the second. 

𝑆 = {𝑎𝑘𝑏: 𝑘 ≥ 0} also works. 𝑧 = 𝑏𝑗−1𝑐𝑗 is your suffix. The proof is a 
little more tedious, but you can make it through.



Uncountability/Halting



Let’s Do Another!

Let 𝐵 = 0,1 . Call a function 𝑔:ℕ → 𝐵 a “binary valued function”

Intuitively, 𝑔 would be something like
public boolean g(BigInteger input){ }

If we could write that 𝑔 in Java.

How many possible 𝑔:ℕ → 𝐵 are there?



Our Second big takeaway

How many Java methods can we write:

public boolean g(int input) ?

Can you list them?

Yeah!! Put them in lexicographic order

i.e. in increasing order of length, with ties broken by alphabetical order.

Wait…that means the number of such Java programs is countable.

And…the number of functions we’re supposed to write is uncountable.



Our Second big takeaway

There are more functions 𝑔:ℕ → 𝐵 than there are Java programs to 
compute them.

Some function must be uncomputable.

That is there is no piece of code which tells you the output of the 
function when you give it the appropriate input. 



Not just Java

This isn’t just about java programs. (all we used about java was that its 
programs are strings)…that’s…well every programming language.

There are functions that simply cannot be computed.

Doesn’t matter how clever you are. How fancy your new programming 
language is. Just doesn’t work.*

*there’s a difference between int and ℕ here, for the proof to work you 
really need all integers to be valid inputs, not just integers in a certain range.



Does this matter?

It’s even worse than that – almost all functions are not computable.

So…how come this has never happened to you?

This might not be meaningful yet. Almost all functions are also 
inexpressible in a finite amount of English (English is a language too!)

You’ve probably never decided to write a program that computes a 
function you couldn’t describe in English…

Are there any problems anyone is interested in solving that aren’t 
computable?



A Practical Uncomputable Problem

Every pressed the run button on your code and have it take a long 
time?

Like an infinitely long time?

What didn’t your compiler…like, tell you not to push the button yet. 

It tells you when your code doesn’t compile before it runs it…why 
doesn’t it check for infinite loops?



The Halting Problem

This would be super useful to solve!

We can’t solve it…let’s find out why.

Given: source code for a program 𝑷 and 𝒙 an input we could give to 𝑷
Return: True if 𝑷 will halt on 𝒙, False if it runs forever (e.g. goes in an 

infinite loop or infinitely recurses)

The Halting Problem



A Proof By Contradiction

Suppose, for the sake of contradiction, there is a program 𝐻, which 
given input P.java, 𝑥 will accurately report 

“𝑃 would halt when run with input 𝑥” or

“𝑃 will run forever on input 𝑥.”

Important: 𝐻 does not just compile P.java and run it. To count, 𝐻
needs to return “halt” or “doesn’t” in a finite amount of time. 

And remember, it’s not a good idea to say “but 𝐻 has to run P.java to tell 
if it’ll go into an infinite loop” that’s what we’re trying to prove!!



A Very Tricky Program.

Diagonal.java(String x){

Run H.exe on input <x, x>

if(H.exe says “x halts on x”)

while(true){//Go into an infinite loop

int x=2+2;

}

else //H.exe says “x doesn’t halt on x”

return; //halt. 

}



So, uhh that’s a weird program.

What do we do with it?

USE IT TO BREAK STUFF

Does Diagonal.java halt when its input is Diagonal.java?

Let’s assume it does and see what happens…



A Very Tricky Program.

Diagonal.java(String x){

Run H.exe on input <x, x>

if(H.exe says “x halts on x”)

while(true){//Go into an infinite loop

int x=2+2;

}

else //H.exe says “x doesn’t halt on x”

return; //halt. 

}

Imagine Diagonal.java halts on 

Diagonal.java.

Then H better say it halts. 

So it goes into an infinite loop.

Wait shoot.



So, uhh that’s a weird program.

What do we do with it?

USE IT TO BREAK STUFF

Does Diagonal.java halt when its input is Diagonal.java?

Let’s assume it does and see what happens…
That didn’t work.

Let’s assume it doesn’t and see what happens…



A Very Tricky Program.

Diagonal.java(String x){

Run H.exe on input <x, x>

if(H.exe says “x halts on x”)

while(true){//Go into an infinite loop

int x=2+2;

}

else //H.exe says “x doesn’t halt on x”

return; //halt. 

}

Imagine Diagonal.java doesn’t 

halt on Diagonal.java.

Then H better say it doesn’t halt. 

So we go into the else branch.

And it halts

Wait shoot.



So, uhh that’s a weird program.

What do we do with it?

USE IT TO BREAK STUFF

Does Diagonal.java halt when its input is Diagonal.java?

Let’s assume it does and see what happens…
That didn’t work.

Let’s assume it doesn’t and see what happens…
That didn’t work either.

There’s no third option. It either halts or it doesn’t. And it doesn’t do 
either. That’s a contradiction! H.exe can’t exist.



So…

So there is no general-purpose algorithm that decides whether any 
input program (on any input string).

The Halting Problem is undecidable (i.e. uncomputable) there is no 
algorithm that solves every instance of the problem correctly.



What that does and doesn’t mean

That doesn’t mean that there aren’t algorithms that often get the 
answer right
For example, if there’s no loops, no recursion, and no method calls, it definitely 
halts. No problem with that kind of program existing.

This isn’t just a failure of computers – if you think you can do this by 
hand, well…

…you cant either.



Takeaways

Don’t expect that there’s a better IDE/better compiler/better 
programming language coming that will make it possible to tell if your 
code is going to hit an infinite loop.

It’s not coming. 



More Uncomputable problems

Imagine we gave the following task to 142 students:

Write a program that prints “Hello World” 

Can you make an autograder?

Technically…NO! 



More Uncomputable problems

Imagine we gave the following task to 142 students:

Write a program that prints “Hello World” 

Can you make an autograder?

Technically…NO!

In practice, we declare the program wrong if it runs for 1 minute or so. 
That’s not right 100% of the time, but it’s good enough for your 
programming classes. 



How Would we prove that?

With a reduction

Suppose, for the sake of contradiction, I can solve the HelloWorld 
problem. (i.e. on input P.java I can tell whether it eventually prints 
HelloWorld)

Let W.exe solve that problem. 

Consider this program…



A Reduction

Trick(P,x){

Run P on x, //(but only simulate printing if P prints things)

Print “Hello World”

}

This actually prints “hello world” iff P halts on x. 

Plug Trick into W and….we solved the Halting Problem!



Reductions in General

The big idea for reductions is “reusing code”

Just like calling a library

But doing it in contrapositive form.

Instead of

“If I have a library, then I can solve a new problem” reductions do the 
contrapositive:
“If I can solve a problem I know I shouldn’t be able to, then that library 
function can’t exist” 



Fun (Scary?) Fact

Rice’s Theorem

Says any “non-trivial” behavior of programs cannot be computed (in 
finite time). 



What Comes next?

CSE 312 (foundations II)

Fewer proofs 

Basics of probability theory (super useful in algorithms, ML, and just everyday 
life). Fundamental statistics.

CSE 332 (data structures and parallelism) 

Data structures, a few fundamental algorithms, parallelism.

Graphs. Graphs everywhere.

Also, induction. [same for 421, 422 the algorithms courses]

CSE 431 (complexity theory)

What can’t you do with computers in a reasonable amount of time.

Beautiful theorems – more on CFGs, DFAs/NFAs as well.



We’ve Covered A LOT

Propositional Logic. 

Boolean logic and circuits.

Boolean algebra.

Predicates, quantifiers and predicate logic.

Inference rules and formal proofs for propositional and predicate logic.

English proofs.

Set theory.

Modular arithmetic.

Prime numbers.

GCD, Euclid's algorithm and modular inverse

You’ll use quantifiers in 332 to define big-O

431 is basically 10 weeks of fun set proofs.

Interested in crypto? They’ll come back.



No really. A lot

Induction and Strong Induction.

Recursively defined functions and sets.

Structural induction.

Regular expressions.

Context-free grammars and languages.

Relations and composition.

Transitive-reflexive closure.

Graph representation of relations and their closures.

Lots of induction proof [sketches] in 332

You’ll see these in compilers

You’ll use graphs at least once a week for 

the rest of your CS career. 



Like A lot a lot.

DFAs, NFAs and language recognition.

Cross Product construction for DFAs.

Finite state machines with outputs at states.

Conversion of regular expressions to NFAs.

Powerset construction to convert NFAs to DFAs.

Equivalence of DFAs, NFAs, Regular Expressions 

Method to prove languages not accepted by DFAs.

Cardinality, countability and diagonalization

Undecidability: Halting problem and evaluating properties of programs.

Promise you won’t ever try to solve the Halting Problem? It’s 

tempting to try to sometimes if you don’t remember it’s 

undecidable


