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Announcements
HW8 is a mix of relations, DFAs/NFAs, and some review-y questions.
Due Wednesday; Late Days work like normal for HW8.

Final review materials and logistics on this page.

What’s fair game for the final?
Everything through the end of this slide deck can show up in any way. (cumulative)

Friday you’ll learn how to show a language is “not regular.” Wednesday you’ll learn 
how to show a set is “uncountable.” There will be a problem on the final “choose 
one of these two: show a language is irregular; show a set is uncountable”

Last day of class will wrap those topics/talk about the Halting Problem (won’t be 
tested directly).

https://courses.cs.washington.edu/courses/cse311/22sp/exams/index.html


Announcements 

Based on some common themes in office hours while grading

Take time to proofread your work!

Please reflect on the “find the bug” problems
The bugs aren’t funny tricks we come up with. They’re issues that we commonly see 
in student submissions. The HW6 one was bugs we saw while grading HW5 this 
quarter.

We’re still seeing lots of backwards reasoning. Ask us in office hours/read the 
backwards proofs reading

https://courses.cs.washington.edu/courses/cse311/22sp/resources/reading03-backwards.pdf


Let’s try to make our more powerful automata

We’re going to get rid of some of the restrictions on DFAs, to see if we 
can get more powerful machines (i.e. can recognize more languages).

From a given state, we’ll allow any number of outgoing edges labeled 
with a given character. The machine can follow any of them. 

We’ll have edges labeled with “휀” – the machine (optionally) can follow 
one of those without reading another character from the input.

If we “get stuck” i.e. the next character is 𝑎 and there’s no transition 
leaving our state labeled 𝑎, the computation dies. 



Nondeterministic Finite Automata

An NFA:
Still has exactly one start state and any number of final states.

The NFA accepts 𝑥 if there is some path from a start state to a final state labeled 
with 𝑥.  
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Wait a second…

But…how does it know?

Is this realistic? 



Three ways to think about NFAs

“Outside Observer”: is there a path labeled by 𝑥 from the start state, to 
the final state (if we know the input in advance can we tell the NFA 
which decisions to make)

“Perfect Guesser”: The NFA has input 𝑥, and whenever there is a choice 
of what to do, it magically guesses a transition that will eventually lead 
to acceptance (if one exists)

“Parallel exploration”: The NFA computation runs all possible 
computations on 𝑥 in parallel (updating each possible one at every 
step) 



So…magic guessing doesn’t exist

I know.

The parallel computation view is realistic.

Lets us give simpler descriptions of complicated objects.

This notion of “nondeterminism” is also really useful in more advanced 
CS theory (you’ll see it again in 421 or 431 if not sooner).

Source of the P vs. NP problem.



NFA practice

What is the language of this NFA?

s0

s1

s5
s4

1

1

1

0

s2
s3

1
0,1

1



NFA practice

What is the language of this NFA?

111 0 ∪ 1 ∗

10 10 ∗
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111 0 ∪ 1 ∗ ∪ [10 10 ∗]



What about those 휀-transitions?
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What about those 휀-transitions?

The set of strings over {0,1,2}
with an even number of 2’s or 

the sum %3 = 0.
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NFA that recognizes “binary strings with a 1 in 
the third position from the end”

“Perfect Guesser”: The NFA has input 𝑥, and whenever there is a choice 
of what to do, it magically guesses a transition that will eventually lead to 
acceptance (if one exists)

Perfect guesser view makes this easier.

Design an NFA for the language in the title.



NFA that recognizes “binary strings with a 1 in 
the third position from the end”

That’s WAY easier than the DFA…
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Parallel Exploration view of an NFA

Input string  0101100
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More NFA practice

Write an NFA for:

Strings over {0,1,2} that contain at least three 0’s.

Strings over 0,1,2 where the number of 2’s is even and the sum of the 
digits %3=0. 



Regular Languages



Regularity

So NFAs/DFAs what can and can’t they do?

Can NFAs do more than DFAs?

How do they relate to context-free-grammars? Regular expressions?

i.e. is there a language 𝐿 such that 𝐿 is the language of an NFA but not 
a DFA? Or vice versa?

What about CFGs/regexes?

Pollev.com/uwcse311



Regularity

So NFAs/DFAs what can and can’t they do?

Can NFAs do more than DFAs?

How do they relate to context-free-grammars? Regular expressions?

For every language 𝑳:
𝑳 is the language of a regular expression if and only if

𝑳 is the language of a DFA if and only if

𝑳 is the language of an NFA

Kleene’s Theorem



Regularity

So NFAs, DFAs, and regular expressions are all “equally powerful”

Every language either can be expressed with any of them or none of 
them.

A set of strings that is recognized by a DFA (equivalently, recognized by 
an NFA; equivalently, the language of a regular expression) is called a 
regular language.

So to show a language is “regular” you just need to show one of these 
and prove it works. There are some “irregular” languages (that don’t 
have a corresponding NFA/DFA/regex)



Proof [sketch]

𝐿 is the language 
of a regular 
expression.

𝐿 is the language 
of an NFA.

𝐿 is the language 
of a DFA.

This is just a “sketch” of the proof. We 

want you to get the intuition for why 

this is true, we’ll go very quickly for 

some cases.



Proof [sketch]

𝐿 is the language 
of a regular 
expression.

𝐿 is the language 
of an NFA.

𝐿 is the language 
of a DFA.

Suppose 𝐿 is the language of some DFA 𝑀. 

𝑀 also satisfies the requirements for an 

NFA, so 𝐿 is also the language of an NFA.



Proof [sketch]

𝐿 is the language 
of a regular 
expression.

𝐿 is the language 
of an NFA.

𝐿 is the language 
of a DFA.



Every regular expression has a corresponding 
NFA.

Proof by…

Structural induction! 

Regular expressions are recursively defined, so we can prove something 
about every regular expression via induction.

What was that definition again…



Regular Expressions

Basis:
휀 is a regular expression. The empty string itself matches the pattern (and nothing 
else does).

∅ is a regular expression. No strings match this pattern. 

𝑎 is a regular expression, for any 𝑎 ∈ Σ (i.e. any character). The character itself 
matching this mattern. 

Recursive
If 𝐴, 𝐵 are regular expressions then (𝐴 ∪ 𝐵) is a regular expression

matched by any string that matches 𝐴 or that matches 𝐵 [or both]).

If 𝐴, 𝐵 are regular expressions then 𝐴𝐵 is a regular expression.

matched by any string 𝑥 such that 𝑥 = 𝑦𝑧, 𝑦 matches 𝐴 and 𝑧 matches 𝐵.

If 𝐴 is a regular expression, then 𝐴∗ is a regular expression.

matched by any string that can be divided into 0 or more strings that match 𝐴.



Let 𝑃(𝐴) be “There is an NFA whose language 
is the same as the language for 𝐴.”

Base Cases:

∅

휀

𝑎 (𝑎 ∈ Σ)



Let 𝑃(𝐴) be “There is an NFA whose language 
is the same as the language for 𝐴.”

Base Cases:

∅

휀

𝑎 (𝑎 ∈ Σ) a



Let 𝑃(𝐴) be “There is an NFA whose language 
is the same as the language for 𝐴.”

Inductive Hypothesis: Let 𝐴, 𝐵 be arbitrary regular expressions. Suppose 
𝑃(𝐴) and 𝑃 𝐵 .

Inductive Step: Case 𝐴 ∪ 𝐵

NA NB

Only a sketch for this 

proof – so we’ll just 

doodle stuff. Let 𝑁𝐴

recognize 𝐴’s 

language, and 

𝑁𝐵 recognize 𝐵′s 
language.



Let 𝑃(𝐴) be “There is an NFA whose language 
is the same as the language for 𝐴.”

Inductive Hypothesis: Let 𝐴, 𝐵 be arbitrary regular expressions. Suppose 
𝑃(𝐴) and 𝑃 𝐵 .

Inductive Step: Case 𝐴 ∪ 𝐵
NA

NBWant a machine that 

accepts exactly strings 

matched by 𝐴 or 𝐵.



Let 𝑃(𝐴) be “There is an NFA whose language 
is the same as the language for 𝐴.”

Inductive Hypothesis: Let 𝐴, 𝐵 be arbitrary regular expressions. Suppose 
𝑃(𝐴) and 𝑃 𝐵 .

Inductive Step: Case 𝐴 ∪ 𝐵
NA

NBWant a machine that 

accepts exactly strings 

matched by 𝐴 or 𝐵.

ɛ

ɛ

Match 𝐴 ∪ 𝐵? Then you match one of the two 

regexes. New machine transitions into start state of 

appropriate old machine. Will be accepted.

Accepted by the machine? First step has to be an 휀-

transition into one of the machines, so would have 

been accepted by the smaller machine, so must have 

matched 𝐴 or 𝐵.



Let 𝑃(𝐴) be “There is an NFA whose language 
is the same as the language for 𝐴.”

Inductive Hypothesis: Let 𝐴, 𝐵 be arbitrary regular expressions. Suppose 
𝑃(𝐴) and 𝑃 𝐵 .

Inductive Step: Case 𝐴𝐵

NA NB

Want a machine that accepts 

exactly strings matched by 𝐴𝐵.



Let 𝑃(𝐴) be “There is an NFA whose language 
is the same as the language for 𝐴.”

Inductive Hypothesis: Let 𝐴, 𝐵 be arbitrary regular expressions. Suppose 
𝑃(𝐴) and 𝑃 𝐵 .

Inductive Step: Case 𝐴𝐵

NA NB

Want a machine that accepts 

exactly strings matched by 𝐴𝐵.

ɛ

ɛ

String 𝑥 that matches 𝐴𝐵 can divide into 𝑦𝑧
where 𝑦 matches 𝐴, 𝑧 matches 𝐵.

NFA can run as 𝑁𝐴 would on 𝑦 take 휀-transition, 

then run as 𝑁𝐵 would on 𝑧 so accepted by 𝑁
String 𝑥 that is accepted?

𝑁 must run in 𝑁𝐴 take 휀-transition, then run in 

𝑁𝐵 until acceptance. Substring read in 𝑁𝐴 must 

match 𝐴. Substring read in 𝑁𝐵 must match 𝐵 (by 

IH) so string matches 𝐴𝐵.



Let 𝑃(𝐴) be “There is an NFA whose language 
is the same as the language for 𝐴.”

Inductive Hypothesis: Let 𝐴, 𝐵 be arbitrary regular expressions. Suppose 
𝑃(𝐴) and 𝑃 𝐵 .

Inductive Step: Case 𝐴∗

NA

Want a machine that accepts 

exactly strings matched by 𝐴∗.



Let 𝑃(𝐴) be “There is an NFA whose language 
is the same as the language for 𝐴.”

Inductive Hypothesis: Let 𝐴, 𝐵 be arbitrary regular expressions. Suppose 
𝑃(𝐴) and 𝑃 𝐵 .

Inductive Step: Case 𝐴∗

NA

Want a machine that accepts 

exactly strings matched by 𝐴∗.

ɛ

ɛ

ɛ

If 𝑥 matches 𝐴∗, then by def of ∗ 𝑥 = 휀 or 𝑥 = 𝑥1 … 𝑥𝑘 with 

each 𝑥𝑖 matching 𝐴. If 𝑥 = 휀, machine accepts by not 

transitioning. Otherwise run accepting computation in 𝑁𝐴 for 

each 𝑥𝑖 return to start until 𝑥𝑘 then end in accept state (all 

possible by IH)

If accepted by 𝑁, 

Either 휀 or go from start state of 𝑁𝐴 to final state and 휀-

transition back to start some number of times. So we can break 

string into parts accepted by 𝑁𝐴 by IH we can break string into 

substrings all matched by 𝐴, i.e. we match 𝐴∗.



Let 𝑃(𝐴) be “There is an NFA whose language 
is the same as the language for 𝐴.”

By principle of structural induction, 𝑃(𝐴) holds for all regular expressions 
𝐴.

Thus every regular expression has an equivalent NFA.



An example

(01 1)*0

0
ɛ

ɛ

ɛ

ɛ

0

1

1

ɛ

ɛ

ɛ

ɛ

ɛ



Proof [sketch]

𝐿 is the language 
of a regular 
expression.

𝐿 is the language 
of an NFA.

𝐿 is the language 
of a DFA.



Can we convert an NFA to a DFA?

NFAs are magic though! DFAs can’t guess…

Parallel exploration: The NFA computation runs all possible 
computations on x step-by-step at the same time in parallel

At any step, the set of all possible states we could be in is fixed!

And the update steps are deterministic if we just check all possibilities!



0,1

s3 s2
s1 s0

0,1 0,11

Parallel Exploration view of an NFA

Input string  0101100
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0 1 0 1 1 0 0
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Can we convert an NFA to a DFA?

NFAs are magic though! DFAs can’t guess…

Parallel exploration: The NFA computation runs all possible 
computations on x step-by-step at the same time in parallel

At any step, the set of all possible states we could be in is fixed!

And the update steps are deterministic if we just check all possibilities!



Converting from an NFA to a DFA

Let 𝑁 be an NFA with a set of states 𝑆.

Need to define a DFA 𝐷 that recognizes the same language.

Let 𝐷 be a DFA with set of states 𝒫(𝑆).

How do we update?

If I’m in a set of states 𝑋, if the next character to be read is 𝑎

Transition to {𝑦: ∃𝑥 ∈ 𝑋 such that 𝑦 is reachable from 𝑥 in 𝑁 using 
exactly one 𝑎 transition and any number of 휀-transitions}.



An example (starting point)
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Finishing the DFA

What about start and accept states?

The start state of 𝐷 is { 𝑥: 𝑥 is the start state of 𝑁 or 𝑥 is reachable from 
the start state of 𝑁 with only 휀-transitions}

i.e. the states the NFA could be in before reading a character of the 
input.

Final states? 𝑋 is a final state if there is an 𝑥 ∈ 𝑋 such that 𝑥 is a final 
state of 𝑁. (If at least one version of the computation is in a final state, 
then the NFA will accept)



An example
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The original NFA

States: 𝑄

Start state: 𝑞0

Transition function: 𝛿(𝑞, 𝑎)

Outputs set of all states reachable 
from 𝑞 using one 𝑎 transition 
(and any number of 휀-transitions)

Final States: 𝐹

The constructed DFA

States: 𝒫(𝑄)

Start state: {𝑞′: 𝑞′reachable from 
𝑞0 with only 휀-transitions }

Transition function: 𝛿𝐷(𝑆, 𝑎) =

𝑞∈𝑆ڂ 𝛿(𝑞, 𝑎).

Final States: {𝑆: 𝑆 ∩ 𝐹 ≠ ∅}

More formally (the “powerset construction”)



Define 𝑃 𝑛 : “on all strings of length 𝑛, the set of states the NFA could 
be in processing 𝑛 corresponds to the state the DFA is in”

Show 𝑃(𝑛) for all 𝑛 by induction.

The choices of start and final states ensure 𝑥 is accepted by the NFA if 
and only if it is accepted by the DFA.

Proof Sketch



Proof [sketch]

𝐿 is the language 
of a regular 
expression.

𝐿 is the language 
of an NFA.

𝐿 is the language 
of a DFA.



Takeaways

Nondeterminism wasn’t magic. It was just efficiency.

The construction we had would turn a 𝑘 state NFA into a 2𝑘 state DFA.

For some languages there might be a smaller DFA. But for some it really 
is (essentially) that big.

“string has a 1 in the 𝑘th character from the end” is an example.

The P vs. NP question asks whether nondeterminism is similar for 
running time on our computers (it doesn’t let you do anything new, but 
it lets you do it MUCH more efficiently).

Next time: Showing a language is not regular!



Enrichment Content
(optional) sketch that for every NFA there is an equivalent regular 
expression. 



Every NFA has an equivalent regular 
expression

Not responsible for this, but if you’re curious:



Generalized NFAs 

Like NFAs but allow
Parallel edges

Regular Expressions as edge labels

-NFAs already have edges labeled ɛ or a

An edge labeled by A can be followed by reading a string of input chars 
that is in the language represented by A

Defn: A string x is accepted iff there is a path from start to final state 
labeled by a regular expression whose language contains x



Starting from an NFA

- Add new start state and final state

ɛ

ɛ

ɛ

A

Then eliminate original states one by one, 

keeping the same language, until it looks 

like:

Final regular expression will be A



Only two simplification rules

Rule 1:  For any two states q1 and q2 with parallel 
edges (possibly q1=q2), replace

Rule 2: Eliminate non-start/final state q3 by replacing 
all

for every pair of states q1, q2 (even if q1=q2)

q1
q2

A

B
by

AڂB
q1

q2

A
B

C AB*Cq1 q3 q2 q1
q2by



Converting an NFA to a regular expression
Consider the DFA for the mod 3 sum
Accept strings from {0,1,2}* where the digits mod 3 sum of 
the digits is 0

t0 t2

t1

0

0

0

1 1

1

2

22



Splicing out a state t1

Regular expressions to add to edges

t0 t2

t1

0

0

1 1

1

2

22

t0→t1→t0 :   10*2

t0→t1→t2 :   10*1

t2→t1→t0 :   20*2

t2→t1→t2 :   20*1

0

s
ɛ

f

ɛ



Splicing out a state t1

Regular expressions to add to edges

t0 t2

0 ∪ 20*1
2 ∪ 10*1

t0→t1→t0 :   10*2

t0→t1→t2 :   10*1

t2→t1→t0 :   20*2

t2→t1→t2 :   20*1

0 ∪ 10*2

s
ɛ

f

ɛ
1 ∪ 20*2



Splicing out state t2 (and then t0)

t0 t2
R1

R1:   0 ∪ 10*2

R2:   2 ∪ 10*1

R3:   1 ∪ 20*2

R4:   0 ∪ 20*1

R5:   R1 ∪ R2R4*R3

R4R2

R3

Final regular expression: R5*=

(0 ∪ 10*2 ∪ (2 ∪ 10*1)(0 ∪ 20*1)*(1 ∪ 20*2))*

f

ɛ

s
ɛ

t0
R5

f
ɛ

s
ɛ



Proof [sketch]

𝐿 is the language 
of a regular 
expression.

𝐿 is the language 
of an NFA.

𝐿 is the language 
of a DFA.


