Nondeterministic Finite Automata

An NFA:
Still has exactly one start state and any number of final states. The NFA accepts \(x \) if there is some path from a start state to a final state labeled with \(x \).

Three ways to think about NFAs

“Outside Observer”: is there a path labeled by \(x \) from the start state, to the final state (if we know the input in advance can we tell the NFA which decisions to make)

“Perfect Guesser”: The NFA has input \(x \), and whenever there is a choice of what to do, it magically guesses a transition that will eventually lead to acceptance (if one exists)

“Parallel exploration”: The NFA computation runs all possible computations on \(x \) in parallel (updating each possible one at every step)
NFA that recognizes “binary strings with a 1 in the third position from the end”

“Perfect Guesser”: The NFA has input x, and whenever there is a choice of what to do, it magically guesses a transition that will eventually lead to acceptance (if one exists)

Perfect guesser view makes this easier.
Design an NFA for the language in the title.

An example