
Finite State Machines CSE 311 Spring 2022

Lecture 24

Relations

Wait what?

≤ is a relation on ℤ.

“3 ≤ 4“ is a way of saying “3 relates to 4” (for the ≤ relation)

(3,4) is an element of the set that defines the relation.

A (binary) relation from 𝐴 to 𝑩 is a subset of 𝑨 × 𝑩
A (binary) relation on 𝑨 is a subset of 𝑨 × 𝑨

Relations

Graphs

Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge

(𝑣𝑘 , 𝑣0) with 𝑘 > 0

Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge

(𝑣𝑘 , 𝑣0) with 𝑘 > 0

Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge

(𝑣𝑘 , 𝑣0) with 𝑘 > 0

Directed Graphs

𝐺 = (𝑉, 𝐸)

𝑉 is a set of vertices (an underlying set of elements)

𝐸 is a set of edges (ordered pairs of vertices; i.e. connections from one
to the next).

Path 𝑣0, 𝑣1, … , 𝑣𝑘 such that 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸
Simple Path: path with all 𝑣𝑖 distinct

Cycle: path with 𝑣0 = 𝑣𝑘 (and 𝑘 > 0)
Simple Cycle: simple path plus edge

(𝑣𝑘 , 𝑣0) with 𝑘 > 0

Lecture-Only Content

Relations and Graphs

More Relations and Graphs

The rest of this deck is a little more on:

Relations, specifically combining them together

Graphs, specifically representing relations as graphs.

We’re going to go through it very fast. We won’t have homework or
exam questions on anything in this section of the deck.

But it is stuff you should see at least once because it might come back
in future classes.

Combining Relations

Given a relation 𝑅 from 𝐴 to 𝐵

And a relation 𝑆 from 𝐵 to 𝐶,

The relation 𝑆 ∘ 𝑅 from 𝐴 to 𝐶 is

{ 𝑎, 𝑐 ∶ ∃𝑏[𝑎, 𝑏 ∈ 𝑅 ∧ 𝑏, 𝑐 ∈ 𝑆]}

Yes, I promise it’s 𝑆 ∘ 𝑅 not 𝑅 ∘ 𝑆 – it makes more sense if you think
about relations (𝑥, 𝑓 𝑥) and (𝑥, 𝑔 𝑥)

But also don’t spend a ton of energy worrying about the order, we
almost always care about 𝑅 ∘ 𝑅, where order doesn’t matter.

Combining Relations

To combine relations, it’s a lot easier if we can see what’s happening.

We’ll use a representation of a directed graph

Representing Relations

To represent a relation 𝑅 on a set A, have a vertex for each element of 𝐴
and have an edge (𝑎, 𝑏) for every pair in 𝑅.

Let 𝐴 be {1,2,3,4} and 𝑅 be { 1,1 , 1,2 , 2,1 , 2,3 , 3,4 }

1

3 4

2

Combining Relations

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑺 ∘ 𝑹 i.e. every pair (𝑎, 𝑐) with a 𝑏 with 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑆

1

3

2 1

3

2

Combining Relations

1

3

2 1

3

2

If 𝑺 = 𝟐, 𝟐 , 𝟐, 𝟑 , 𝟑, 𝟏 and 𝑹 = { 𝟏, 𝟐 , 𝟐, 𝟏 , 𝟏, 𝟑 }
Compute 𝑺 ∘ 𝑹 i.e. every pair (𝑎, 𝑐) with a 𝑏 with 𝑎, 𝑏 ∈ 𝑅 and 𝑏, 𝑐 ∈ 𝑆

Combining Relations

Let 𝑅 be a relation on 𝐴.

Define 𝑅0 as { 𝑎, 𝑎 ∶ 𝑎 ∈ 𝐴}

𝑅𝑘 = 𝑅𝑘−1 ∘ 𝑅

𝑎, 𝑏 ∈ 𝑅𝑘 if and only if there is a path of length 𝑘 from 𝑎 to 𝑏 in 𝑅.

We can find that on the graph!

More Powers of 𝑅.

For two vertices in a graph, 𝑎 can reach 𝑏 if there is a path from 𝑎 to 𝑏.

Let 𝑅 be a relation on the set 𝐴. The connectivity relation 𝑅∗ consists of
all pairs (𝑎, 𝑏) such that 𝑎 can reach 𝑏 (i.e. there is a path from 𝑎 to 𝑏 in
𝑅)

𝑅∗ = 𝑘=0ڂ
∞ 𝑅𝑘

Note we’re starting from 0 (the textbook makes the unusual choice of
starting from 𝑘 = 1).

What’s the point of 𝑅∗

𝑅∗ is also the “reflexive-transitive closure of 𝑅.”

It answers the question “what’s the minimum amount of edges I would
need to add to 𝑅 to make it reflexive and transitive?”

Why care about that? The transitive-reflexive closure can be a summary
of data – you might want to precompute it so you can easily check if 𝑎
can reach 𝑏 instead of recomputing it every time.

What’s the point of 𝑅∗?

Do you need to take 142 before you take 311?

Relations and Graphs

Describe how each property will show up in the graph of a relation.

Reflexive

Symmetric

Antisymmetric

Transitive

Relations and Graphs

Describe how each property will show up in the graph of a relation.

Reflexive

Symmetric

Antisymmetric

Transitive

Every vertex has a “self-loop” (an edge from the vertex to itself)

Every edge has its “reverse edge” (going the other way) also in the graph.

No edge has its “reverse edge” (going the other way) also in the graph.

If there’s a length-2 path from 𝑎 to 𝑏 then there’s a direct edge from 𝑎 to 𝑏

Finite State Machines

The rest of this deck is “fair game” for homework and exams.

Last Two Weeks

What computers can and can’t do…
Given any finite amount of time.

We’ll start with a simple model of a computer – finite state machines.

What do we want computers to do? Let’s start very simple.
We’ll give them an input (in a string format), and we want them to say
“yes” or “no” for that string on a certain question.
Example questions one might want to answer.
Does this input java code compile to a valid program?

Does this input string match a particular regular expression?

Is this input list sorted?

Depending on the “computer” some questions might be out of reach.

Deterministic Finite Automaton

Our machine is going to get a string as input.

It will read one character at a time and update “its state.”

At every step, the machine thinks of itself as in one of the

(finite number) vertices.

When it reads the character it follows the arrow labeled

with that character to its next state.

Start at the “start state” (unlabeled, incoming arrow).

After you’ve read the last character, accept the string if

and only if you’re in a “final state” (double circle).

Let’s see an example

Input string:

011

1010

Let’s see an example

Input string:

011

1010

Let’s see an example

Input string:

011

1010

Let’s see an example

Input string:

011

1010

Let’s see an example

Input string:

011

1010

Let’s see an example

Input string:

011

1010

Deterministic Finite Automata

Some more requirements:

Every machine is defined with respect to an alphabet Σ

Every state has exactly one outgoing edge for every character in Σ.

There is exactly one start state; can have as many accept states (aka final
states) as you want – including none.

Deterministic Finite Automata

Can also represent transitions with a table.

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Deterministic Finite Automata

What is the language of this DFA?

I.e. the set of all strings it accepts?

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Deterministic Finite Automata

If the string has 111, then you’ll end up in 𝑠3 and never leave.

If you end with a 0 you’re back in 𝑠0 which also accepts.

And…𝜀 is also accepted

0 ∪ 1 ∗111 0 ∪ 1 ∗ ∪ 0 ∪ 1 ∗0 ∗

s0 s2 s3s1

111

0,1

0

0

0Old State 0 1

s0 s0 s1

s1 s0 s2

s2 s0 s3

s3 s3 s3

Design some DFAs

Let Σ = {0,1,2}

𝑀1 should recognize “strings with an even number of 2’s.

What do you need to remember?

𝑀2 should recognize “strings where the sum of the digits is congruent
to 0 (𝑚𝑜𝑑 3)”

Design some DFAs

Let Σ = {0,1,2}

𝑀1 should recognize “strings with an even number of 2’s.

𝑀2 should recognize “strings where the sum of the digits is congruent
to 0 (𝑚𝑜𝑑 3)"

s1 s02

2

0,10,1

2

00

𝑡1

𝑡2

𝑡0

1

2
2

1

1

Designing DFAs notes

DFAs can’t “count arbitrarily high”

For example, we could not make a DFA that remembers the overall sum
of all the digits (not taken % 3)

That would have infinitely many states! We’re only allowed a finite
number.

s0t0 s1t0

s0t1

s0t2 s1t1

s1t2

Strings over {0,1,2} w/ even number of 2’s
and sum%3=0

s0t0 s1t0

s0t1

s0t2 s1t1

s1t2
2

2

2

2

2

2

1

1

1

1

1

1

0

0 0

0 0

0

Strings over {0,1,2} w/ even number of 2’s and
sum%3=0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

Strings over {0,1,2} w/ even number of 2’s and
sum%3=0

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Changed notation –

final states with bold

outlines.

Strings over {0,1,2} w/ even number of 2’s and
sum%3=0

Called the “cross product”

construction (because you have a set

of states equal to 𝑄1 × 𝑄2 where

first two DFAs had states 𝑄1, 𝑄2.

A very common trick to combine

DFAs.

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Changed notation –

final states with bold

outlines.

Strings over {0,1,2} w/ even number of 2’s and
sum%3=0

Called the “cross product”

construction (because you have a set

of states equal to 𝑄1 × 𝑄2 where

first two DFAs had states 𝑄1, 𝑄2.

A very common trick to combine

DFAs. “even # 2’s” “odd # 2’s”

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Changed notation –

final states with bold

outlines.

Strings over {0,1,2} w/ even number of 2’s and
sum%3=0

Called the “cross product”

construction (because you have a set

of states equal to 𝑄1 × 𝑄2 where

first two DFAs had states 𝑄1, 𝑄2.

A very common trick to combine

DFAs.

“sum%3 = 0”

“sum%3 = 1”

“sum%3 = 2”

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Strings over {0,1,2} w/ even number of 2’s OR
sum%3=0

Want to

change the

and to or –

don’t need to

change states

or transitions…

s0t0 s1t0

s0t1

s0t2

s1t1

s1t2

0 0

1

1

1

1

0

0 0

0

1

1

2

2

2 2

2

2

Strings over {0,1,2} w/ even number of 2’s OR
sum%3=0

Want to change

the and to or –

don’t need to

change states or

transitions…

Just which accept.

The set of binary strings with a 1 in the 3 rd

position from the start

s0 s2 As1

10,10,1

0,1

R

0

0,1

The set of binary strings with a 1 in the 3 rd

position from the start

The set of binary strings with a 1 in the 3 rd

position from the end

What do we need to remember?

We can’t know what string was third from the end until we have read
the last character.

So we’ll need to keep track of “the character that was 3 ago” in case this
was the end of the string.

But if it’s not…we’ll need the character 2 ago, to update what the
character 3 ago becomes. Same with the last character.

3 bit shift register

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

“Remember the last three bits”

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

10

00 01 10 11

1
1

1

0

0 0

0 0 0 0
1

1

1

1

The set of binary strings with a 1 in the 3 rd position from the end

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

The set of binary strings with a 1 in the 3 rd position from the end

The beginning versus the end

001 011

111

110

101010000

100

1

1
1 0 1

1

1

1

00
0

1

0

0

00

s

0

s

2
As

1

10,10,1

0,1

R

0 0,1

From the beginning was “easier” than “from
the end”

At least in the sense that we needed fewer states.

That might be surprising since a java program wouldn’t be much
different for those two.

Not being able to access the full input at once limits your abilities
somewhat and makes some jobs harder than others.

What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

#1s even #1s odd

What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

#0s even

#0s odd

What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

#0s is congruent to #1s (mod 2)

Wait…there’s an easier way to

describe that….

What language does this machine recognize?

s0

s2 s3

s1

1

1

1

1

0

0

0

0

That’s all binary strings of even

length.

s0 s1

0,1

0,1

Takeaways

The first DFA might not be the simplest.

Try to think of other descriptions – you might realize you can keep track
of fewer things than you thought.

Boy…it’d be nice if we could know that we have the smallest possible
DFA for a given language…

DFA Minimization

We can know!

Fun fact: there is a unique minimum DFA for every language (up to
renaming the states)

High level idea – final states and non-final states must be different.

Otherwise, hope that states can be the same, and iteratively separate
when they have to go to different spots.

In some quarters, we cover it in detail. But…we ran out of time.
Optional slides will be posted – won’t be required in HW or final but
you might find it useful/interesting for your own learning.

Next Time

Some (historic and modern) applications of DFAs

There are some languages DFAs can’t recognize (say, {0𝑘1𝑘|𝑘 ≥ 0})

What if we give the DFAs a little more power…try to get them to do
more things.

