Directed Graphs

$$
G=(V, E)
$$

V is a set of vertices (an underlying set of elements)
E is a set of edges (ordered pairs of vertices; i.e. connections from one to the next).

Path $v_{0}, v_{1}, \ldots, v_{k}$ such that $\left(v_{i}, v_{i+1}\right) \in E$ Simple Path: path with all v_{i} distinct Cycle: path with $v_{0}=v_{k}($ and $k>0)$ simple Cycle: simple path plus edge $\left(v_{k}, v_{0}\right)$ with $k>0$

Relations and Graphs

Describe how each property will show up in the graph of a relation.
Reflexive

Symmetric

Antisymmetric

Transitive

Deterministic Finite Automata

What is the language of this DFA?
I.e. the set of all strings it accepts?

Old State	0	1
s_{0}	s_{0}	s_{1}
s_{1}	s_{0}	s_{2}
s_{2}	s_{0}	s_{3}
s_{3}	s_{3}	s_{3}

Design some DFAs

Let $\Sigma=\{0,1,2\}$
M_{1} should recognize "strings with an even number of 2's.
What do you need to remember?
M_{2} should recognize "strings where the sum of the digits is congruent to $0(\bmod 3) "$

