Directed Graphs

G = (V, E)

V is a set of vertices (an underlying set of elements)

E is a set of edges (ordered pairs of vertices; i.e. connections from one to the next).

Path $v_0, v_1, ..., v_k$ such that $(v_i, v_{i+1}) \in E$ Simple Path: path with all v_i distinct Cycle: path with $v_0 = v_k$ (and k > 0) Simple Cycle: simple path plus edge (v_k, v_0) with k > 0

Relations and Graphs

Describe how each property will show up in the graph of a relation. Reflexive

Symmetric

Antisymmetric

Transitive

Deterministic Finite Automata

What is the language of this DFA?

I.e. the set of all strings it accepts?

Old State	0	1
s ₀	s ₀	s ₁
s ₁	s ₀	s ₂
s ₂	s ₀	s ₃
Sa	Sa	Sa

Design some DFAs

Let $\Sigma = \{0,1,2\}$

 M_1 should recognize "strings with an even number of 2's.

What do you need to remember?

 M_2 should recognize "strings where the sum of the digits is congruent to $0 \pmod{3}$ "