Examples

$S \rightarrow 0 S 0|1 S 1| 0|1| \varepsilon$
$S \rightarrow 0 S|S 1| \varepsilon$
$S \rightarrow(S)|S S| \varepsilon$
$S \rightarrow A B$
$A \rightarrow 0 A 1 \mid \varepsilon$
$B \rightarrow 1 B 0 \mid \varepsilon$

Arithmetic

$E \rightarrow E+E|E * E|(E)|x| y|z| 0|1| 2|3| 4|5| 6|7| 8 \mid 9$

Generate $(2 * x)+y$

Generate $2+3 * 4$ in two different ways
pollev.com/uwcse311

Relations

Relations

A (binary) relation from A to \boldsymbol{B} is a subset of $\boldsymbol{A} \times \boldsymbol{B}$ A (binary) relation on A is a subset of $A \times A$

Wait what?

\leq is a relation on \mathbb{Z}.
" $3 \leq 4$ " is a way of saying " 3 relates to 4 " (for the \leq relation)
$(3,4)$ is an element of the set that defines the relation.

Try a few of your own

Decide whether each of these relations are
Reflexive, symmetric, antisymmetric, and
Pollev.com/uwcse311 transitive.
\subseteq on $\mathcal{P}(\mathcal{U})$
\geq on \mathbb{Z}
$>$ on \mathbb{R}

Symmetry: for all $a, b \in S,[(a, b) \in R \rightarrow(b, a) \in R]$ Antisymmetry: for all $a, b \in S,[(a, b) \in R \wedge a \neq b \rightarrow(b, a) \notin R]$ Transitivity: for all $a, b, c \in S,[(a, b) \in R \wedge(b, c) \in R \rightarrow(a, c) \in R]$

Reflexivity: for all $a \in S,[(a, a) \in R]$

I on \mathbb{Z}
$\equiv(\bmod 3)$ on \mathbb{Z}

