Examples

 $S \to 0S0|1S1|0|1|\varepsilon$

 $S \to 0S|S1|\varepsilon$

 $S \to (S)|SS|\varepsilon$

 $S \rightarrow AB$

 $A \to 0A1|\varepsilon$

 $B\to 1B0|\varepsilon$

Arithmetic

 $E \to E + E|E * E|(E)|x|y|z|0|1|2|3|4|5|6|7|8|9$

Generate (2 * x) + y

Generate 2 + 3 * 4 in two different ways

pollev.com/uwcse311

Relations

Relations

A (binary) relation from A to B is a subset of $A \times B$ A (binary) relation on A is a subset of $A \times A$

Wait what?

 \leq is a relation on \mathbb{Z} .

" $3 \le 4$ " is a way of saying "3 relates to 4" (for the \le relation)

(3,4) is an element of the set that defines the relation.

Try a few of your own

Decide whether each of these relations are

Reflexive, symmetric, antisymmetric, and transitive.

 \subseteq on $\mathcal{P}(\mathcal{U})$

 \geq on \mathbb{Z}

> on $\mathbb R$

| on **Z**+

on \mathbb{Z}

 $\equiv (mod \ 3) \ \text{on} \ \mathbb{Z}$

Pollev.com/uwcse311

Symmetry: for all $a, b \in S$, $[(a, b) \in R \rightarrow (b, a) \in R]$

Antisymmetry: for all $a, b \in S$, $[(a, b) \in R \land a \neq b \rightarrow (b, a) \notin R]$

Transitivity: for all $a, b, c \in S$, $[(a, b) \in R \land (b, c) \in R \rightarrow (a, c) \in R]$

Reflexivity: for all $a \in S$, $[(a, a) \in R]$