Recursive Definitions of Sets

Basis: $6 \in S, 15 \in S$ Recursive: If $x, y \in S$ then $x + y \in S$

Basis: $\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix} \in S \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix} \in S$ Recursive: if $x \in S$, then $\alpha x \in S$ for all $\alpha \in \mathbb{R}$. If $x, y \in S$ then $x + y \in S$.

Write a recursive definition of $\{x: x = 3^i \text{ for some } i \in \mathbb{N}\}.$

Functions on Strings

Since strings are defined recursively, most functions on strings are as well. Length: len(ε)=0; len(wa)=len(w)+1 for $w \in \Sigma^*$, $a \in \Sigma$ Reversal: $\varepsilon^R = \varepsilon;$ (wa)^R = aw^R for $w \in \Sigma^*$, $a \in \Sigma$ Concatenation $x \cdot \varepsilon = x$ for all $x \in \Sigma^*$; $x \cdot (wa) = (x \cdot w)a$ for $w \in \Sigma^*$, $a \in \Sigma$ Number of c's in a string $\#_c(\varepsilon) = 0$ $\#_c(wc) = \#_c(w)$ for $w \in \Sigma^*$; $a \in \Sigma \setminus \{c\}$.

