Recursive Definitions of Sets

Basis: $6 \in S, 15 \in S$
Recursive: If $x, y \in S$ then $x+y \in S$
Basis: $\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \in S\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right] \in S$
Recursive: if $x \in S$, then $\alpha x \in S$ for all $\alpha \in \mathbb{R}$.
If $x, y \in S$ then $x+y \in S$.

Write a recursive definition of $\left\{x: x=3^{i}\right.$ for some $\left.i \in \mathbb{N}\right\}$.

Functions on Strings

Since strings are defined recursively, most functions on strings are as well.
Length:
$\operatorname{len}(\varepsilon)=0 ;$
$\operatorname{len}(w a)=\operatorname{len}(w)+1$ for $w \in \Sigma^{*}, a \in \Sigma$
Reversal:
$\varepsilon^{R}(w a)^{R \prime}=a w^{R}$ for $w \in \Sigma^{*}, a \in \Sigma$
Concatenation
$x \cdot \varepsilon=x$ for all $x \in \Sigma^{*}$;
$x \cdot(w a)=(x \cdot w) a$ for $w \in \Sigma^{*}, a \in \Sigma$
Number of c 's in a string
$\#_{c}(\varepsilon)=0$
$\#_{c} c(w c)=\#_{c}(w)+1$ for $w \in \Sigma^{*}$;
$\#_{c}^{c}(w a)=\#_{c}^{c}(w)$ for $w \in \Sigma^{*}, a \in \Sigma \backslash\{c\}$.

Structural Induction

Let $P(x)$ be " x is divisible by 3 ."
We show $P(x)$ holds for all $x \in S$ by structural induction.
Base Cases:
Inductive Hypothesis:
Inductive Step:

We conclude $P(x) \forall x \in S$ by the principle of induction. $\underset{\text { Basis: } 6 \in S, 15 \in S}{ }$

Claim len $(x \cdot y)=\operatorname{len}(x)+\operatorname{len}(y)$ for all $x, y \in \Sigma^{*}$.

Define Let $P(y)$ be "len $(\mathrm{x} \cdot \mathrm{y})=\operatorname{len}(\mathrm{x})+\operatorname{len}(\mathrm{y})$ for all $x \in \Sigma^{*}$. "
We prove $P(y)$ for all $y \in \Sigma^{*}$ by structural induction.
Base Case:
Inductive Hypothesis:
Inductive Step:
$\Sigma^{*}:$ Basis: $\varepsilon \in \Sigma^{*}$.
Recursive: If $w \in \Sigma^{*}$ and $a \in \Sigma$ then $w a \in \Sigma^{*}$

