Even More Induction

## Let's Try Another! Stamp Collecting

I have 4 cent stamps and 5 cent stamps (as many as I want of each). Prove that I can make exactly $n$ cents worth of stamps for all $n \geq 12$.

Try for a few values.
Then think...how would the inductive step go?


## Stamp Collection, Done Wrong

Define $P(n)$ I can make $n$ cents of stamps with just 4 and 5 cent stamps.
We prove $P(n)$ is true for all $n \geq 12$ by induction on $n$.
Base Case:
12 cents can be made with three 4 cent stamps.
Inductive Hypothesis Suppose $P(k), k \geq 12$.
Inductive Step:
We want to make $k+1$ cents of stamps. By IH we can make $k$ cents exactly with stamps. Replace one of the 4 cent stamps with a 5 cent stamp.
$P(n)$ holds for all $n$ by the principle of induction.

## Stamp Collection, Done Wrong

What if the starting point doesn't have any 4 cent stamps? Like, say, 15 cents $=5+5+5$.

## Gridding

I've got a bunch of these 3 piece tiles.
I want to fill a $2^{n} \times 2^{n}$ grid ( $n \geq 1$ ) with the pieces, except for a $1 \times 1$ spot in a corner.


## Gridding: Not a formal proof, just a sketch

Base Case: $n=1$


Inductive hypothesis: Suppose you can tile a $2^{k} \times 2^{k}$ grid, except for a corner.
Inductive step: $2^{k+1} \times 2^{k+1}$, divide into quarters. By IH can tile...


## Recursively Defined Functions

Just like induction works will with recursive code, it also works well for recursively-defined functions.

Define the Fibonacci numbers as follows:
$f(0)=1$
$f(1)=1$
$f(n)=f(n-1)+f(n-2)$ for all $n \in \mathbb{N}, n \geq 2$.
*This is a somewhat unusual definition, $f(0)=0, f(1)=1$ is more common.

## Fibonacci Inequality

Show that $f(n) \leq 2^{n}$ for all $n \geq 0$ by induction.

$$
\begin{gathered}
f(0)=1 ; \quad f(1)=1 \\
f(n)=f(n-1)+f(n-2) \text { for all } n \in \mathbb{N}, n \geq 2 .
\end{gathered}
$$

## Fibonacci Inequality

$$
\begin{gathered}
f(0)=1 ; \quad f(1)=1 \\
f(n)=f(n-1)+f(n-2) \text { for all } n \in \mathbb{N}, n \geq 2 .
\end{gathered}
$$

Show that $f(n) \leq 2^{n}$ for all $n \geq 0$ by induction.
Define $P(n)$ to be " $f(n) \leq 2^{n "}$ We show $P(n)$ is true for all $n \geq 0$ by induction on $n$.
Base Cases: $(n=0): f(0)=1 \leq 1=2^{0}$.
( $n=1$ ): $f(1)=1 \leq 2=2^{1}$.
Inductive Hypothesis: Suppose $P(0) \wedge P(1) \wedge \cdots \wedge P(k)$ for an arbitrary $k \geq 1$.
Inductive step:

Target: $P(k+1)$. i.e. $f(k+1) \leq 2^{k+1}$

## Fibonacci Inequality

$$
\begin{gathered}
f(0)=1 ; \quad f(1)=1 \\
f(n)=f(n-1)+f(n-2) \text { for all } n \in \mathbb{N}, n \geq 2 .
\end{gathered}
$$

Show that $f(n) \leq 2^{n}$ for all $n \geq 0$ by induction.
Define $P(n)$ to be " $f(n) \leq 2^{n "}$ We show $P(n)$ is true for all $n \geq 0$ by induction on $n$.

Base Cases: $(n=0): f(0)=1 \leq 1=2^{0}$.
( $n=1$ ): $f(1)=1 \leq 2=2^{1}$.
Inductive Hypothesis: Suppose $P(0) \wedge P(1) \wedge \cdots \wedge P(k)$ for an arbitrary $k \geq 1$. Inductive step: $f(k+1)=f(k)+f(k-1)$ by the definition of the Fibonacci numbers. Applying IH twice, we have $f(k+1) \leq 2^{k}+2^{k-1}<2^{k}+2^{k}=$ $2^{k+1}$.

Therefore, we have $P(n)$ for all $n \geq 0$ by the principle of induction.

# Claim: $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$. 

[Define $P(n)$ ]

Base Case<br>Inductive Hypothesis<br>Inductive Step

[conclusion]

## Claim: $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$.

Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$." We show $P(n)$ holds for all $n \in \mathbb{N}$. Base Case $(n=0)$ note that $2^{2 n}-1=2^{0}-1=0$. Since $3 \cdot 0=0$, and 0 is an integer, $3 \mid\left(2^{2 \cdot 0}-1\right)$.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$ Inductive Step:

Target: $P(k+1)$, i.e. $3 \mid\left(2^{2(k+1)}-1\right)$
Therefore, we have $P(n)$ for all $n \in \mathbb{N}$ by the principle of induction.

## Claim: $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$.

Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$." We show $P(n)$ holds for all $n \in \mathbb{N}$.
Base Case $\left(n_{2}=0\right)$ note that $2^{2 n}-1=2^{0}-1=0$. Since $3 \cdot 0=0$, and 0 is an integer, $3 \mid\left(2^{2 \cdot 0}-1\right)$.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$
Inductive Step: By inductive hypothesis, $3 \mid\left(2^{2 k}-1\right)$. i.e. there is an integer $j$ such that $3 j=2^{z k}-1$.

$$
2^{2(k+1)}-1=4 \cdot 2^{2 k}-1
$$

## FORCE the expression in your IH to appear

Target: $P(k+1)$, i.e. $3 \mid\left(2^{2(k+1)}-1\right)$
Therefore, we have $P(n)$ for all $n \in \mathbb{N}$ by the principle of induction.

## Claim: $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$.

Let $P(n)$ be " $3 \mid\left(2^{2 n}-1\right)$." We show $P(n)$ holds for all $n \in \mathbb{N}$.
Base Case $(n=0)$ note that $2^{2 n}-1=2^{0}-1=0$. Since $3 \cdot 0=0$, and 0 is an integer, $3 \mid\left(2^{2 \cdot 0}-1\right)$.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 0$
Inductive Step: By inductive hypothesis, $3 \mid\left(2^{2 k}-1\right)$. i.e. there is an integer $j$ such that $3 j=$ $2^{2 k}-1$.
$2^{2(k+1)}-1=4 \cdot 2^{2 k}-1=4\left(2^{2 k}-1\right)+4-1$
By IH, we can replace $2^{2 k}-1$ with $3 j$ for an integer $j$
$2^{2(k+1)}-1=4(3 j)+4-1=3(4 j)+3=3(4 j+1)$
Since $4 j+1$ is an integer, we meet the definition of divides and we have:
Target: $P(k+1)$, i.e. $3 \mid\left(2^{2(k+1)}-1\right)$
Therefore, we have $P(n)$ for all $n \in \mathbb{N}$ by the principle of induction.

## Claim: $3 \mid\left(2^{2 n}-1\right)$ for all $n \in \mathbb{N}$.

That inductive step might still seem like magic.

It sometimes helps to run through examples, and look for patterns:
$2^{2.0}-1=0=3 \cdot 0$
$2^{2 \cdot 1}-1=3=3 \cdot 1$
$2^{2 \cdot 2}-1=15=3 \cdot 5$
$2^{2 \cdot 3}-1=63=3 \cdot 21$
$2^{2 \cdot 4}-1=255=3 \cdot 85$
$2^{2 \cdot 5}-1=1023=3 \cdot 341$
The divisor goes from $k$ to $4 k+1$

$$
\begin{gathered}
0 \rightarrow 4 \cdot 0+1=1 \\
1 \rightarrow 4 \cdot 1+1=5 \\
5 \rightarrow 4 \cdot 5+1=21
\end{gathered}
$$

That might give us a hint that $4 k+1$ will be in the algebra somewhere, and give us another intermediate target.

## Induction: Hats!

You have $n$ people in a line ( $n \geq 2$ ). Each of them wears either a purple hat or a gold hat. The person at the front of the line wears a purple hat. The person at the back of the line wears a gold hat.
Show that for every arrangement of the line satisfying the rule above, there is a person with a purple hat next to someone with a gold hat.

Yes this is kinda obvious. I promise this is good induction practice. Yes you could argue this by contradiction. I promise this is good induction practice.

## Induction: Hats!

Define $P(n)$ to be "in every line of $n$ people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat"
We show $P(n)$ for all integers $n \geq 2$ by induction on $n$.
Base Case: $n=2$
Inductive Hypothesis:
Inductive Step:

By the principle of induction, we have $P(n)$ for all $n \geq 2$

## Induction: Hats!

Define $P(n)$ to be "in every line of $n$ people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat"
We show $P(n)$ for all integers $n \geq 2$ by induction on $n$.
Base Case: $n=2$ The line must be just a person with a purple hat and a person with a gold hat, who are next to each other.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 2$.
Inductive Step: Consider an arbitrary line with $k+1$ people in purple and gold hats, with a gold hat at one end and a purple hat at the other.

Target: there is someone in a purple hat next to someone in a gold hat.
By the principle of induction, we have $P(n)$ for all $n \geq 2$

## Induction: Hats!

Define $P(n)$ to be "in every line of $n$ people with gold and purple hats, with a purple hat at one end and a gold hat at the other, there is a person with a purple hat next to someone with a gold hat"
We show $P(n)$ for all integers $n \geq 2$ by induction on $n$.
Base Case: $n=2$ The line must be just a person with a purple hat and a person with a gold hat, who are next to each other.
Inductive Hypothesis: Suppose $P(k)$ holds for an arbitrary $k \geq 2$.
Inductive Step: Consider an arbitrary line with $k+1$ people in purple and gold hats, with a gold hat at one end and a purple hat at the other.
Case 1: There is someone with a purple hat next to the person in the gold hat at one end. Then those people are the required adjacent opposite hats.
Case 2:. There is a person with a gold hat next to the person in the gold hat at the end. Then the line from the second person to the end is length $k$, has a gold hat at one end and a purple hat at the other. Applying the inductive hypothesis, there is an adjacent, opposite-hat wearing pair.
In either case we have $P(k+1)$.
By the principle of induction, we have $P(n)$ for all $n \geq 2$

## 

Show that $f(n) \geq 2^{n / 2}$ for all $n \geq 2$ by induction.
[Define $P(n)$ ]
Base Cases:

Inductive Hypothesis:
Inductive step:

Therefore, we have $P(n)$ for all $n \geq 0$ by the principle of induction.

Fibonacci Inequality TW@b $(n)=\begin{gathered}f(0)=1 ;\end{gathered} \begin{gathered}f(1)=1 \\ f(n-1)+f(n-2) \text { for all } n \in \mathbb{N}, n \geq 2\end{gathered}$
Show that $f(n) \geq 2^{n / 2}$ for all $n \geq 2$ by induction.
Define $P(n)$ to be " $f(n) \geq 2^{n / 2 "}$ We show $P(n)$ is true for all $n \geq 2$ by induction on $n$.
Base Cases: $f(2)=f(1)+f(0)=2 \geq 2=2^{1}=2^{2 / 2}$
$f(3)=f(2)+f(1)=2+1=3=2 \cdot \frac{3}{2} \geq 2 \sqrt{2}=2^{1.5}=2^{3 / 2}$
Inductive Hypothesis: Suppose $P(2) \wedge P(3) \wedge \cdots \wedge P(k)$ for an arbitrary $k \geq 3$.
Inductive step: $f(k+1)=f(k)+f(k-1)$ by the definition of the Fibonacci numbers. Applying IH twice, we have

Target: $f(k+1) \geq 2^{(k+1) / 2}$
Therefore, we have $P(n)$ for all $n \geq 0$ by the principle of induction.

Fibonacci Inequality TW@b $(n)=\begin{gathered}f(0)=1 ;\end{gathered} \begin{gathered}f(1)=1 \\ f(n-1)+f(n-2) \text { for all } n \in \mathbb{N}, n \geq 2\end{gathered}$
Show that $f(n) \geq 2^{n / 2}$ for all $n \geq 2$ by induction.
Define $P(n)$ to be " $f(n) \geq 2^{n / 2 "}$ We show $P(n)$ is true for all $n \geq 2$ by induction on $n$.
Base Cases: $f(2)=f(1)+f(0)=2 \geq 2=2^{1}=2^{2 / 2}$
$f(3)=f(2)+f(1)=2+1=3=2 \cdot \frac{3}{2} \geq 2 \sqrt{2}=2^{1.5}=2^{3 / 2}$
Inductive Hypothesis: Suppose $P(2) \wedge P(3) \wedge \cdots \wedge P(k)$ for an arbitrary $k \geq 3$.
Inductive step: $f(k+1)=f(k)+f(k-1)$ by the definition of the Fibonacci numbers. Applying IH
twice, we have twice, we have
$f(k+1) \geq 2^{k / 2}+2^{(k-1) / 2}$

$$
\geq 2^{(k+1) / 2}
$$

Therefore, we have $P(n)$ for all $n \geq 0$ by the principle of induction.

## 

Show that $f(n) \geq 2^{n / 2}$ for all $n \geq 2$ by induction.
Define $P(n)$ to be " $f(n) \geq 2^{n / 2 "}$ We show $P(n)$ is true for all $n \geq 2$ by induction on $n$.
Base Cases: $f(2)=f(1)+f(0)=2 \geq 2=2^{1}=2^{2 / 2}$
$f(3)=f(2)+f(1)=2+1=3=2 \cdot \frac{3}{2} \geq 2 \sqrt{2}=2^{1.5}=2^{3 / 2}$
Inductive Hypothesis: Suppose $P(2) \wedge P(3) \wedge \cdots \wedge P(k)$ for an arbitrary $k \geq 3$.
Inductive step: $f(k+1)=f(k)+f(k-1)$ by the definition of the Fibonacci numbers. Applying IH
twice, we have twice, we have

$$
\begin{aligned}
f(k+1) & \geq 2^{k / 2}+2^{(k-1) / 2} \\
& =2^{(k-1) / 2}(\sqrt{2}+1) \\
& \geq 2^{(k-1) / 2} \cdot 2 \\
& \geq 2^{(k+1) / 2}
\end{aligned}
$$

Therefore, we have $P(n)$ for all $n \geq 0$ by the principle of induction.

More Practice

## Even More Induction Practice

Let $g(n)=\left\{\begin{array}{cl}1 & \text { if } n=0 \\ n \cdot g(n-1) & \text { otherwise }\end{array}\right.$
Let $h(n)=n^{n}$

Claim: $h(n) \geq g(n)$ for all integers $n \geq 1$

## Even More Induction Practice

Define $P(n)$ to be " $\mathrm{h}(n) \geq g(n)$ for all integers $n \geq 1$
We show $P(n)$ for all $n \geq 1$ by induction on $n$.
Base Case
Inductive Hypothesis:
Inductive Step:

Thus $P(k+1)$ holds.
Therefore, we have $P(n)$ for all $n \geq 1$ by induction on $n$.

$$
\begin{aligned}
& \text { Let } g(n)=\left\{\begin{array}{cl}
1 & \text { if } n=0 \\
n \cdot g(n-1) & \text { otherwise }
\end{array}\right. \\
& \text { Let } h(n)=n^{n}
\end{aligned}
$$

## Even More Induction Practice

Define $P(n)$ to be " $\mathrm{h}(n) \geq g(n)$ for all integers $n \geq 1$
We show $P(n)$ for all $n \geq 1$ by induction on $n$.
Base Case $(n=1): h(n)=1^{1}=1 \geq 1=1 \cdot 1=1 \cdot g(0)=g(1)$.
Inductive Hypothesis: Suppose $P(k)$ is true for an arbitrary $k \geq 1$.
Inductive Step:
$g(k+1)=(k+1) \cdot g(k)$

$$
=(k+1)^{k+1}
$$

Thus $P(k+1)$ holds.
Therefore, we have $P(n)$ for all $n \geq 1$ by induction on $n$.

$$
\begin{aligned}
& \text { Let } g(n)=\left\{\begin{array}{cl}
1 & \text { if } n=0 \\
n \cdot g(n-1) & \text { otherwise }
\end{array}\right. \\
& \text { Let } h(n)=n^{n}
\end{aligned}
$$

## Even More Induction Practice

Define $P(n)$ to be " $\mathrm{h}(n) \geq g(n)$ for all integers $n \geq 1$
We show $P(n)$ for all $n \geq 1$ by induction on $n$.
Base Case $(n=1): h(n)=1^{1}=1 \geq 1=1 \cdot 1=1 \cdot g(0)=g(1)$.
Inductive Hypothesis: Suppose $P(k)$ is true for an arbitrary $k \geq 1$.
Inductive Step:

$$
\begin{aligned}
g(k+1) & =(k+1) \cdot g(k) \\
& \leq(k+1) \cdot h(k) \text { by } \mathrm{H} .
\end{aligned}
$$

$$
=(k+1)^{k+1}
$$

Thus $P(k+1)$ holds.
Therefore, we have $P(n)$ for all $n \geq 1$ by induction on $n$.

$$
\begin{aligned}
& \text { Let } g(n)=\left\{\begin{array}{cl}
1 & \text { if } n=0 \\
n \cdot g(n-1) & \text { otherwise }
\end{array}\right. \\
& \text { Let } h(n)=n^{n}
\end{aligned}
$$

## Even More Induction Practice

Define $P(n)$ to be " $\mathrm{h}(n) \geq g(n)$ for all integers $n \geq 1$
We show $P(n)$ for all $n \geq 1$ by induction on $n$.
Base Case $(n=1): h(n)=1^{1}=1 \geq 1=1 \cdot 1=1 \cdot g(0)=g(1)$.
Inductive Hypothesis: Suppose $P(k)$ is true for an arbitrary $k \geq 1$.
Inductive Step:

$$
\begin{aligned}
g(k+1) & =(k+1) \cdot g(k) \\
& \leq(k+1) \cdot h(k) \quad \text { by IH. } \\
& \leq(k+1) \cdot k^{k} \quad \text { by definition of } h(k) \\
& \leq(k+1) \cdot(k+1)^{k} \\
& =(k+1)^{k+1} .
\end{aligned}
$$

Thus $P(k+1)$ holds.
Therefore, we have $P(n)$ for all $n \geq 1$ by induction on $n$.

$$
\begin{aligned}
& \text { Let } g(n)=\left\{\begin{array}{cl}
1 & \text { if } n=0 \\
n \cdot g(n-1) & \text { otherwise }
\end{array}\right. \\
& \text { Let } h(n)=n^{n}
\end{aligned}
$$

## Even More Induction Practice

Define $P(n)$ to be " $\mathrm{h}(n) \geq g(n)$ for all integers $n \geq 1$
We show $P(n)$ for all $n \geq 1$ by induction on $n$.
Base Case $(n=1): h(n)=1^{1}=1 \geq 1=1 \cdot 1=1 \cdot g(0)=g(1)$.
Inductive Hypothesis: Suppose $P(k)$ is true for an arbitrary $k \geq 1$.
Inductive Step:

$$
\begin{aligned}
g(k+1) & =(k+1) \cdot g(k) \\
& \leq(k+1) \cdot h(k) \quad \text { by IH. } \\
& \leq(k+1) \cdot k^{k} \quad \text { by definition of } h(k) \\
& \leq(k+1) \cdot(k+1)^{k} \\
& =(k+1)^{k+1} .
\end{aligned}
$$

Thus $P(k+1)$ holds.
Therefore, we have $P(n)$ for all $n \geq 1$ by induction on $n$.

$$
\begin{aligned}
& \text { Let } g(n)=\left\{\begin{array}{cl}
1 & \text { if } n=0 \\
n \cdot g(n-1) & \text { otherwise }
\end{array}\right. \\
& \text { Let } h(n)=n^{n}
\end{aligned}
$$

## Even More Induction Practice: Sums

Let $P(n)$ be $\sum_{i=0}^{n} 2+3 i=\frac{(n+1)(3 n+4)}{2}$
Show $P(n)$ for all $n \in \mathbb{N}$ by induction on $n$.
Base Case ( $n=0$ ):
Inductive Hypothesis:
Inductive Step:
[Conclusion]

## Even More Induction Practice: Sums

Let $P(n)$ be $\sum_{i=0}^{n} 2+3 i=\frac{(n+1)(3 n+4)}{2}$
Show $P(n)$ for all $n \in \mathbb{N}$ by induction on $n$.
Base Case $(n=0): \sum_{i=0}^{0} 2+3 i=2=\frac{4}{2}=\frac{(0+1)(3 \cdot 0+4)}{2}$
Inductive Hypothesis: Suppose $P(k)$ is true for an arbitrary $k \geq 0$. Inductive Step:

Target: $\sum_{i=0}^{k+1} 2+3 i=\frac{([\mathbf{k}+1]+1)(3[\mathbf{k}+1]+4)}{2}$

## Even More Induction Practice: Sums

Let $P(n)$ be $\sum_{i=0}^{n} 2+3 i=\frac{(n+1)(3 n+4)}{2}$
Show $P(n)$ for all $n \in \mathbb{N}$ by induction on $n$.
Base Case $(n=0): \sum_{i=0}^{0} 2+3 i=2=\frac{4}{2}=\frac{(0+1)(3 \cdot 0+4)}{2}$
Inductive Hypothesis: Suppose $P(k)$ is true for an arbitrary $k \geq 0$.
Inductive Step:

$$
\begin{aligned}
& \sum_{i=0}^{k+1} 2+3 i=\left(\sum_{i=0}^{k} 2+3 i\right)+(2+3(k+1)) . \text { By IH, we have: } \\
& \sum_{i=0}^{k+1} 2+3 i=\frac{((k+1)(3 \mathrm{k}+4)}{2}+2+3 \mathrm{k}+3=? ? ? ?
\end{aligned}
$$

$$
=\frac{([\mathrm{k}+1]+1)(3[\mathrm{k}+1]+4)}{2}
$$

## Even More Induction Practice: Sums

Let $P(n)$ be $\sum_{i=0}^{n} 2+3 i=\frac{(n+1)(3 n+4)}{2}$
Show $P(n)$ for all $n \in \mathbb{N}$ by induction on $n$.
Base Case $(n=0): \sum_{i=0}^{0} 2+3 i=2=\frac{4}{2}=\frac{(0+1)(3 \cdot 0+4)}{2}$
Inductive Hypothesis: Suppose $P(k)$ is true for an arbitrary $k \geq 0$.
Inductive Step:
$\sum_{i=0}^{k+1} 2+3 i=\left(\sum_{i=0}^{k} 2+3 i\right)+(2+3(k+1))$. By IH, we have:
$\sum_{i=0}^{k+1} 2+3 i=\frac{(\mathrm{k}+1)(3 \mathrm{k}+4)}{2}+2+3 \mathrm{k}+3=\frac{3 \mathrm{k}^{2}+7 \mathrm{k}+4}{2}+\frac{6 \mathrm{k}+10}{2}=\frac{3 \mathrm{k}^{2}+13 \mathrm{k}+14}{2}=$ $\frac{(3 \mathrm{k}+7)(\mathrm{k}+2)}{2}=\frac{([\mathrm{k}+1]+1)(3[\mathrm{k}+1]+4)}{2}$
Therefore, $P(n)$ holds for all $n \in \mathbb{N}$ by induction on $n$.

