How do we accomplish those steps?

That fact? You can prove it in the extra credit problem on HW5. It's a nice combination of lots of things we've done with modular arithmetic.

Let's talk about finding $C=a^{e} \% n$.
e is a BIG number (about 2^{16} is a common choice)

```
int total = 1;
for(int i = 0; i < e; i++){
    total = (a * total) % n;
}
```


One More Example for Reference

Find $3^{25} \% 7$ using the fast exponentiation algorithm.

$$
\begin{array}{ll}
3^{1} \% 7=3 & \begin{array}{l}
25 \% 7=316+8+1 \% 7 \\
3^{2} \% 7=2
\end{array} \\
=\left[\left(3^{16} \% 7\right) \cdot\left(3^{8} \% 7\right)\right. \\
3^{4} \% 7=4 & =(1 \cdot 2 \cdot 3] \% \\
3^{8} \% 7=2 & \\
3^{16} \% 7=4 &
\end{array}
$$

