Warm-up:
Show "if a^{2} is even, then a is even.

Proof by Contradiction
CSE 311 Spring 2022 Lecture 16

If a^{2} is even then a is even

Proof:
We argue by contrapositive.
Let a be an arbitrary integer and suppose a is odd.
a^{2} is odd.

If a^{2} is even then a is even

Proof:

We argue by contrapositive.
Let a be an arbitrary integer and suppose a is odd.
By definition of odd, $a=2 k+1$ for some integer k.
$a^{2}=(2 k+1)^{2}=4 k^{2}+4 k+1$.
Factoring, $a^{2}=2\left(2 k^{2}+2 k\right)+1$.
Since k was an integer, $2^{2}+2 k$ is an integer.
So a^{2} is odd by definition.

Announcements

We're posting the handouts and solutions for this week's section later today.
We think you could use another example or two of properly formatted induction proofs.
They're primarily "study for the midterm" materials...no harm having those early.
You should still go to section this week through, your TAs are more useful than the written solutions.
I'll post the slides for Friday (induction practice day) late tonight as well.
Midterm info is here.

Proof By Contradiction

Suppose the negation of your claim.
Show that you can derive False (i.e. (\neg claim) \rightarrow F)

If your proof is right, the implication is true.
So \neg claim must be False.
So claim must be True!

Proof By Contradiction Skeleton

Suppose, for the sake of contradiction $\neg p$
q
$\neg q$
But q and $\neg q$ is a contradiction! So we must have p.

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (i.e. not rational).
Proof:

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.

But [] is a contradiction!

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $t \neq 0$ and $\sqrt{2}=s / t$
Let $p=\frac{\mathrm{s}}{\operatorname{ggd}(\mathrm{s}, \mathrm{t})}, \mathrm{q}=\frac{t}{\operatorname{gcd}(\mathrm{~s}, \mathrm{t})} \quad$ By the fundamental theorem of arithmetic, we have divided out all common factors of s, t and sol p, q have no more common prime factors. Therefore the $\operatorname{gcd}(p, q)=1$.
$\sqrt{2}=\frac{p}{q}$

That's a contradiction! We conclude $\sqrt{2}$ is irrational.

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (i.e. not rational).
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $\mathrm{t} \neq 0$ and $\sqrt{2}=s / t$
Let $p=\frac{\mathrm{s}}{\operatorname{gcd}(\mathrm{s}, \mathrm{t})}, \mathrm{q}=\frac{\mathrm{t}}{\operatorname{gcd}(\mathrm{s}, \mathrm{t})}$ By the fundamental theorem of arithmetic, we have divided out all common factors of

$\sqrt{2}=\frac{p}{q}$
$2=\frac{p^{2}}{q^{2}}$
$2 q^{2}=p^{2}$ so p^{2} is even.

That's a contradiction! We conclude $\sqrt{2}$ is irrational.

Proof By Contradiction

Claim: $\sqrt{2}$ is irrational (i.e not rational).
Proof:
Suppose for the sake of contradiction that $\sqrt{2}$ is rational.
By definition of rational, there are integers s, t such that $\mathrm{t} \neq 0$ and $\sqrt{2}=s / t$
Let $p=\frac{\mathrm{s}}{\operatorname{gcd}(\mathrm{s}, \mathrm{t})}, \mathrm{q}=\frac{\mathrm{t}}{\operatorname{gcd}(\mathrm{s}, \mathrm{t})}$ By the fundamental theorem of arithmetic, we have divided out all common factors of s, t and $50 p, q$ have no more common prime factors. Therefore the $\operatorname{gcd}(p, q)=1$.
$\sqrt{2}=\frac{p}{q}$
$2=\frac{p^{2}}{q^{2}}$
$2 q^{2}$
$4 k^{2}$$p^{2}$ so p^{2} is even. By the fact above, p is even, i.e. $p=2 k$ for some integer k. Squaring both sides $p^{2}=$
Substituting into our original equation, we have: $2 q^{2}=4 k^{2}$, i.e. $q^{2}=2 k^{2}$.
So q^{2} is even. Applying the fact above again, q is even.
But if both p and q are even, $\operatorname{gcd}(p, q) \geq 2$. But we said $\operatorname{gcd}(p, q)=1$
That's a contradiction! We conclude $\sqrt{2}$ is irrational.

Proof By Contradiction

How in the world did we know how to do that?

In real life...lots of attempts that didn't work.
Be very careful with proof by contradiction - without a clear target, you can easily end up in a loop of trying random things and getting nowhere.

What's the difference?

What's the difference between proof by contrapositive and proof by contradiction?

Show $p \rightarrow q$	Proof by contradiction	Proof by contrapositive
Starting Point	$\neg(p \rightarrow q) \equiv(p \wedge \neg q)$	$\neg q$
Target	Something false	$\neg p$

Show p	Proof by contradiction	Proof by contrapositive
Starting Point	$\neg p$	---
Target	Something false	---

Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:

Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:
Suppose for the sake of contradiction, that there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.

But [] is a contradiction! So there must be infinitely many primes.

Another Proof By Contradiction

Claim: There are infinitely many primes.
Proof:
Suppose for the sake of contradiction, that there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $q=p_{1} \cdot p_{2} \cdot \cdots \cdot p_{k}+1$
Case 1: q is prime

Case 2: q is composite

But [] is a contradiction! So there must be infinitely many primes.

Another Proof By Contradiction

Claim: There are infinitely many primes.

Proof:

Suppose for the sake of contradiction, that there are only finitely many primes. Call them $p_{1}, p_{2}, \ldots, p_{k}$.
Consider the number $q=p_{1} \cdot p_{2} \cdot \cdots \cdot p_{k}+1$
Case 1: q is prime
$q>p_{i}$ for all i. But every prime was supposed to be on the list p_{1}, \ldots, p_{k}. A contradiction!
Case 2: q is composite
Some prime on the list (say p_{i}) divides q. So $q \% p_{i}=0$. and $\left(p_{1} p_{2} \cdots p_{k}+1\right) \% p_{i}=$

1. But $q=\left(p_{1} p_{2} \cdots p_{k}+1\right)$. That's a contradiction!

In either case we have a contradiction! So there must be infinitely many primes.

Just the Skeleton

"For all integers x, if x^{2} is even, then x is even."

Just the Skeleton

"For all integers x, if x^{2} is even, then x is even."

Suppose for the sake of contradiction, there is an integer x, such that x^{2} is even and x is odd.
[] is a contradiction, so for all integers x, if x^{2} is even, then x is even.

Just the Skeleton

"There is not an integer k such that for all integers $n, k \geq n$.

Just the Skeleton

"There is not an integer k such that for all integers $n, k \geq n$.

Suppose, for the sake of contradiction, that there is an integer k such that for all integers $n, k \geq n$.
[] is a contradiction! So there is not an integer k such that for all integers $n, k \geq n$.

