Let's Try Another Induction Proof

Let $g(n)= \begin{cases}2 & \text { if } n=2 \\ g(n-1)^{2}+3 g(n-1) & \text { if } n>2\end{cases}$
Prove $g(n)$ is even for all $n \geq 2$ by induction on n.

Let's just set this one up, we'll leave the individual pieces as exercises.

Making Induction Proofs Pretty

All of our induction proofs will come in 5 easy(?) steps!

1. Define $P(n)$. State that your proof is by induction on n.
2. Base Case: Show $P(b)$ i.e. show the base case
3. Inductive Hypothesis: Suppose $P(k)$ for an arbitrary $k \geq b$.
4. Inductive Step: Show $P(k+1)$ (i.e. get $P(k) \rightarrow P(k+1))$
5. Conclude by saying $P(n)$ is true for all $n \geq b$ by the principle of induction.

Making Induction Proofs Pretty

All of our strong induction proofs will come in 5 easy(?) steps!

1. Define $P(n)$. State that your proof is by induction on n.
2. Base Case: Show $P(b)$ i.e. show the base case
3. Inductive Hypothesis: Suppose $\mathrm{P}(\mathrm{b}) \wedge \cdots \wedge P(k)$ for an arbitrary $k \geq b$.
4. Inductive Step: Show $P(k+1)$ (i.e. get $[\mathrm{P}(\mathrm{b}) \wedge \cdots \wedge P(k)] \rightarrow P(k+1))$
5. Conclude by saying $P(n)$ is true for all $n \geq b$ by the principle of induction.

Let's Try Another! Stamp Collecting

I have 4 cent stamps and 5 cent stamps (as many as I want of each).
Prove that I can make exactly n cents worth of stamps for all $n \geq 12$.

Try for a few values.
Then think....how would the inductive step go?

